K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Ta có AA’//(BCC’B’) nên khoảng cách từ AA' đến mặt phẳng (BCC'B') cũng chính là khoảng cách từ A đến mặt phẳng (BCC'B'). 

22 tháng 3 2016

A' B' C' A B C M N c a a b a căn 2 a căn 3

23 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},\overrightarrow{AA'}=\overrightarrow{c}\)

với \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\)

và \(\left|\overrightarrow{a}\right|=a,\overrightarrow{\left|b\right|}=a\sqrt{2},\left|\overrightarrow{c}\right|=a\sqrt{3}\)

khi đó 

\(\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{c,}\overrightarrow{BC}=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

Giả sử đường vuông góc chung cắt \(\overrightarrow{AB}\) tại M và cắt \(\overrightarrow{BC'}\) tại N và \(\overrightarrow{AM}=x.\overrightarrow{AB'}=x.\overrightarrow{a}+x.\overrightarrow{c},\overrightarrow{BN}=y.\overrightarrow{BC'}=-y.\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Suy ra \(\overrightarrow{AN}=\left(1-y\right)\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Và do đó

\(\overrightarrow{MN}=\left(1-x-y\right)\overrightarrow{a}+y.\overrightarrow{b}+\left(y-x\right)\overrightarrow{c}\)

Ta có :

\(MN\perp AB',BC'\Leftrightarrow\begin{cases}\overrightarrow{MN}.\overrightarrow{AB}=0\\\overrightarrow{MN}.\overrightarrow{BC'}=0\end{cases}\)

                            \(\Leftrightarrow\begin{cases}-4x+2y+1=0\\-2x+6y-1=0\end{cases}\)

Giải hệ ta thu được \(x=\frac{2}{5},y=\frac{3}{10}\)

Từ đó :

\(MN^2=\left[\left(1-x-y\right)^2+2y^2+3\left(y-x\right)^2\right].a^2=\frac{39^a}{100}\)

Suy ra \(d\left(AB';BC'\right)=\frac{a\sqrt{39}}{10}\)

20 tháng 10 2018

Đáp án B.

Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có chiều cao AA’; tâm của đáy là trung điểm của AC nên

15 tháng 2 2018

Đáp án A

Gọi E là trung điểm của BB' => ME//B'C => (AME)//B'C

= d(C;(AME))

Vì 

Gọi h là khoảng cách từ B đến mặt phẳng (AME).

Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên :

11 tháng 10 2019

Đáp án A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có \(BB' \bot \left( {ABC} \right);BB' \subset \left( {BCC'B'} \right) \Rightarrow \left( {ABC} \right) \bot \left( {BCC'B'} \right)\)

\(\left( {ABC} \right) \cap \left( {BCC'B'} \right) = BC\)

(ABC): Kẻ \(AH \bot BC\)

\( \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A,\left( {BCC'B'} \right)} \right) = AH\)

Xét tam giác ABC vuông cân tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{2}{{{a^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow AH = \frac{{a\sqrt 2 }}{2}\)

b) +) Ta có \(AB \bot AC,AB \bot AA'\left( {AA' \bot \left( {ABC} \right)} \right) \Rightarrow AB \bot \left( {ACC'A'} \right);AC' \subset \left( {ACC'A'} \right) \Rightarrow AC' \bot AB\)

Do đó tam giác ABC' là tam giác vuông.

+) Trên (ABC’) kẻ \(AK \bot BC' \Rightarrow d\left( {A,BC'} \right) = AK\)

Xét tam giác ACC’ vuông tại C có

\(A{C'^2} = A{C^2} + C{C'^2} = {a^2} + {h^2}\) (Định lí Pytago)

Xét tam giác ABC’ vuông tại A có

\(\begin{array}{l}\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{{C'}^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{a^2} + {h^2}}} = \frac{{2{a^2} + {h^2}}}{{{a^2}\left( {{a^2} + {h^2}} \right)}} \Rightarrow A{K^2} = \frac{{{a^2}\left( {{a^2} + {h^2}} \right)}}{{2{a^2} + {h^2}}}\\ \Rightarrow AK = a.\sqrt {\frac{{{a^2} + {h^2}}}{{2{a^2} + {h^2}}}} \end{array}\)

 

14 tháng 1 2019

Chọn D

3 tháng 4 2019

Chọn A.

Gọi H là hình chiếu của A lên  BC. Ta có 

Suy ra AH là đoạn vuông góc chung của AA'  và BC' nên 

3 tháng 8 2017

Đáp án A

6 tháng 10 2017

Đáp án D

Ta có 

Gọi H là trung điểm của BC.

∆ AHB vuông tại H

Mà  ∆ BIC vuông tại I

Thay vào (*) ta có:   tan 2 α   +   tan 2 β = 1