Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H chân đường kẻ từ A của lăng trụ
Khi đó A'H là là hình chiếu của AA' trên mp
Xét tam giác AA'H vuông tại H có : \(SinA'=\frac{AH}{AA'}\)
\(AH=AA'.SinA'=AA'.Sin60^o=\frac{b\sqrt{3}}{2}\)
Do tam giác A'B'C' là tam giác đều nên chiều cao của tam giác : \(\frac{a\sqrt{3}}{2}\)
Thể tích ABC.A'B'C' : V = \(\frac{1}{3}\). AH . \(S_{A'B'C'}=\frac{3}{8}\)\(a^2b\)
Đáp án đó
A B C B' C' A' E M
Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B
Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)
Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)
Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)
Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :
\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)
\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)
Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)
Gọi H là chân đường cao đi qua A của lăng trụ. Khi đó góc (A'H, A'A) = 60 ° . Từ đó suy ra AH = (b 3 )/2.
Ta cũng có:
Do đó:
Từ đó suy ra