Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $(d)$ đi qua $M(3;1)$ nên:
$y_M=(2-a)x_M+a$
$\Leftrightarrow 1=(2-a).3+a\Rightarrow a=2,5$
Khi đó: $y=(2-2,5)x+2,5=-0,5x+2,5$
Vì $-0,5<0$ nên hàm nghịch biến trên R.
b.
$y_A=3$
$-0,5x_A+2,5=-0,5.(-1)+2,5=3$
$\Rightarrow y_A=-0,5x_A+2,5$ nên điểm $A\in (d)$
c. Gọi PTĐT $(d')$ là: $y=mx+n$ với $m,n$ là số thực
$(d')\parallel (d)$ nên $m=-0,5$
$M(3;1), N(-1,5)\Rightarrow$ tọa độ trung điểm $I$ của $MN$ là:
$(\frac{3-1}{2}; \frac{1+5}{2})=(1,3)$
$(d')$ đi qua $(1,3)$ nên:
$3=m.1+n\Rightarrow m+n=3\Rightarrow n=3-m=3-(-0,5)=3,5$
Vậy PTĐT $(d')$ là: $y=-0,5x+3,5$
phương trình của đt là y=ax+b
vì d đi qua điểm (0,-2) nên thay x=0,y=-2 vào pt
-2=0a+b
b=-2
vậy phương trình đt là y=ax-2
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
a, thay x=2, y=-2 vào y=ax^2 ta đc
-2=a*2^2
-2=4a
a=-1/2
phương trình trở thành
y=-1/2x^2
lập bảng vs x có 5 gt: -2;-1;0;1;2
tìm y theo x
kẻ đc bảng
b,gọi phương trình đường thẳng D là y=ax+b
do D song song với đường thẳng y=2x nên ta được:
a=2 và b khác 0
thay a=2 pt D trở thành
y=2x+b
do D tiếp xúc vs P nên ta đc
-1/2x^2=2x+b
-1/2x^2-2x-b=0
ta có: đenta'=1-b/2
mà D tiếp xúc vs P nên đenta' =0
1-b/2=0
b=2
vậy (D):y=2x+2
gọi pt đt d cần tìm là: y=ax+b
vì d đi qua M(0;-2) nên ta thay x=0, y=-2 vào d: \(-2=0a+b\Leftrightarrow b=-2\)=> (d): y=ax-2
xét pt: \(2x^2=ax-2\Leftrightarrow2x^2-ax+2=0\); \(\Delta=1-4.2.2=-15<0\Rightarrow\)d và P k giao nhau
=> k tìm đc đt d t/m
hình như đề sai bạn ạ. vì k tìm đc d nên câu b k làm đc luôn