K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

$\begin{cases}x+my=m+1\\y+mx=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y+m(m+1-my)=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y-my^2+m^2+m=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y(m^2-1)=m^2-2m+1\\\end{cases}$
Để HPT có nghiệm duy nhất thì $m^2-1 \neq 0\\\Leftrightarrow m \ne \pm1$
$\Leftrightarrow\begin{cases}y=\dfrac{(m-1)^2}{(m-1)(m+1)}=\dfrac{m-1}{m+1}\\x=m+1-my=\dfrac{(m+1)^2-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\\end{cases}$
$\Rightarrow xy=\dfrac{(3m+1)(m-1)}{(m+1)^2}$
$=\dfrac{3m^2-2m-1}{(m+1)^2}$
Xét $xy+1$
$=\dfrac{3m^2-2m-1+m^2+2m+1}{(m+1)^2}$
$=\dfrac{4m^2}{(m+1)^2} \ge 0$
$\Rightarrow xy \ge -1$
Dấu "=" xảy ra khi $m=0$
Vậy m=0 thì HPT có nghiệm duy nhất và $min_{xy}=-1$

22 tháng 1 2022

a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)

 Khi \(m=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)

Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)

Vậy...

18 tháng 8 2019

mình nhầm , phần b là GTNN

18 tháng 8 2019

à ko , đúng đề rồi

AH
Akai Haruma
Giáo viên
22 tháng 5 2018

Lời giải:

\(\left\{\begin{matrix} (m+1)x-y=m+1\\ x+(m-1)y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (m+1)x-y=m+1\\ x(m+1)+(m^2-1)y=2(m+1)\end{matrix}\right.\)

Lấy PT(2)- PT(1):

\(\Rightarrow m^2y=m+1\)

Hiển nhiên \(m\neq 0\Rightarrow y=\frac{m+1}{m^2}\)

Thay vào \(x+(m-1)y=2\) suy ra \(x=1+\frac{1}{m^2}\)

Do đó hpt luôn có nghiệm duy nhất \((x,y)=\left(1+\frac{1}{m^2}, \frac{m+1}{m^2}\right)\) với mọi $m\neq 0$

Khi đó:

\(x+y=1+\frac{2}{m^2}+\frac{1}{m}=\left(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\geq \frac{7}{8}\)

Để đạt được min \(=\frac{7}{8}\) thì \(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}=0\Leftrightarrow m=-4\)

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)

x+y>-5

=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)

=>\(\dfrac{3}{m+2}+5>0\)

=>\(\dfrac{3+5m+10}{m+2}>0\)

=>\(\dfrac{5m+13}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)

=>\(m>-2\)

TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)

=>\(m< -\dfrac{13}{5}\)

Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)