Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hệ pt trên tương đương:\(\hept{\begin{cases}x=3-ky\\k\times\left(3-ky\right)+4y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3-ky\\-y\left(k^2-4\right)=6-3k\end{cases}}\)
*với k=2 ,hệ pt có vô số nghiệm.*với x=-2,hệ pt vô nghiệm.* với \(x\ne\pm2,\)hệ pt tương đương:
\(\hept{\begin{cases}x=3-ky\\y=\frac{6-3k}{-\left(k^2-4\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-ky\\y=\frac{3}{k+2}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=3-\frac{3k}{k+2}\\y=\frac{3}{k+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{k+2}\\y=\frac{3}{k+2}\end{cases}}\)
vậy \(\hept{\begin{cases}x>1\\y>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{6}{k+2}>1\\\frac{3}{k+2}>0\end{cases}\Leftrightarrow\hept{\begin{cases}k+2< 6\\k+2>0\end{cases}}}\)\(\Leftrightarrow-2< k< 4\)
VẬY HỆ PHƯƠNG TRÌNH ĐÃ CHO CÓ NGHIỆM X>1,Y>O KHI VÀ CHỈ KHI -2<K<4 VÀ K\(\ne2\)
Từ pt (1) => y=(ax-3)/2 (*)
Thay vào pt (2), được:
3x+a(ax-3)/2 = 4
<=> 6x+a2x-3a=8
<=> (6+a2).x=3a+8 => x=(3a+8)/(a2+6)
Thay vào (*) ta được;
y=[a.(3a+8)/(a2+6) - 3]/2=(3a2+8a-3a2-18)/2(a2+6)
=> y= (4a-9)/(a2+6)
Ta nhận thấy, mẫu số của x và y là a2+6 luôn >=6 với mọi a.
=> để y < 0 thì 4a-9<0 => a<9/4
Để x>0 thì 3a+8>0 => x > -8/3
ĐS: -8/3 < a < 9/4
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\)
\(\hept{\begin{cases}m.\left(4-my\right)+m=10\\x=4-my\end{cases}}\)
\(\hept{\begin{cases}m\left(5-my\right)=10\\x=4-my\end{cases}}\)
\(\hept{\begin{cases}x=4-my\\m=\frac{10}{5-my}\end{cases}}\)
\(\hept{\begin{cases}x=4-\frac{10y}{5-my}\\4-\frac{10y}{5-my}=\frac{10}{5-my}\end{cases}}\)
\(\hept{\begin{cases}x=4-\frac{10y}{5-my}\\\frac{-10y-10}{5-my}=-4\end{cases}}\)