K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B C D O M N P Q

Kẻ \(OP⊥AB\)

\(OQ⊥BC\)

Xét tứ giác \(PBQO\) có 3 góc vuông nên là hính chữ nhật. (HCN)

HCN \(PBQO\) có BO là đường phân giác của góc B nên là hình vuông.

\(\Rightarrow OP=OQ\) và \(\widehat{POQ}=90^o\)

\(\Rightarrow\widehat{POQ}=\widehat{MON}\left(=90^o\right)\)

\(\Rightarrow\widehat{POQ}-\widehat{PON}=\widehat{MON}-\widehat{PON}\)

\(\Rightarrow\widehat{NOQ}=\widehat{MOP}\)

Từ đó bạn tự chứng minh \(\Delta NOQ=\Delta MOP\left(g.c.g\right)\)

\(\Rightarrow S_{NOQ}=S_{MOP}\)

\(\Rightarrow S_{NOQ}+S_{OPBN}=S_{MOP}+S_{OPBN}\)

\(\Rightarrow S_{OMBN}=S_{PBQO}\)

\(S_{PBQO}=\frac{BO.QP}{2}=BO^2=\left(\frac{BD}{2}\right)^2=6^2=36\left(cm^2\right)\)

Vậy ...

3 tháng 3 2016

Sombn=18

Sdhck=24

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0