Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) Xét \(\Delta ABM\)và \(\Delta ADN\)có :
\(\widehat{ABM}=\widehat{ADN}\left(=90^o\right)\)
\(A=A\)( T/chất hình vuông ABCD )
\(\widehat{BAM}=\widehat{DAN}\)
\(\Rightarrow\Delta ABM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow AM=AN\)( cặp cạnh tương ứng bằng nhau )
\(\Rightarrow\Delta AMN\)cân tại A
Mà \(\widehat{MAN}=90^o\)
\(\Rightarrow\Delta AMN\)vuông cân
E làm câu a rùi nên chị ko làm nữa nha
b. Dễ c.m được tam giác EAF đồng dạng với tam giác EBM(gg)
nên \(\frac{EA}{EB}=\frac{FE}{EM}\Leftrightarrow\frac{AE}{FE}=\frac{EB}{EM}\)
hay tam giác AEB đồng dạng với tam giác EFM
nên AMF=45 độ
nên AFM=90 hay MF vuông với AN
c. Ta thấy SAMN =SADN+SABM
Dễ tính được \(AC=4\sqrt{2}\left(Pytago\right)\)
TA thấy EA là phân giác BAC nên \(\frac{AB}{BM}=\frac{AC}{CM}=\frac{AB+AC}{BM+CM}=\frac{AB+AC}{CB}=1+\sqrt{2}\)
\(\Rightarrow BM=-4+4\sqrt{2}\)
Tương tự ta cũng có FA là phân giác DAC nên \(\frac{AD}{DN}=\frac{AC}{CN}=\frac{AD+AC}{CD}=1+\sqrt{2}\)
\(\Rightarrow DN=-4+4\sqrt{2}\)
Vậy SAMN =SADN+SABM=\(\frac{1}{2}\cdot AD\cdot DN+\frac{1}{2}\cdot AB\cdot BM=4\cdot\left(-4+4\sqrt{2}\right)=-16+16\sqrt{2}\)(ĐVDT)
Chắc vậy ^.^
Chúc học tốt