K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Có : góc BAM + góc MAD = 90 độ

Lại có : góc MAD + góc DAQ = 90 độ

=> góc BAM = góc DAQ

=> Tam giác ADQ = tam giác ABM ( cgv - gn )

=> AM=AQ => tam giác AMQ cân tại A

Mà tam giác AMQ vuông tại A => tam giác AMQ vuông cân tại A

Tương tự : cm tam giác PAB = tam giác NAD ( cgv - gn )

=> PA = NA => tam giác ANP cân tại A

Mà tam giác ANP vuông tại A nên tam giác ANP vuông cân tại A

Tk mk nha

12 tháng 1 2018

Xét tam giác CNP vuông tại C có CE là trung tuyến => CE = NP/2

Tương tự : EA = NP/2

=> CE = EA

=> E thuộc trung trực của AC

Tương tự : cm AF = CF = QM/2

=> F thuộc trung trực AC

Mà tứ giác ABCD là hình vuông nên BD chính là trung trực của AC

=> B;D;E;F thẳng hàng

Tk mk nha

7 tháng 8 2024

## Bài 1:

**a) Chứng minh rằng các tam giác AMQ, ANP vuông cân.**

* **Tam giác AMQ:**
    * Ta có: $\widehat{MAQ} = 90^\circ$ (do d vuông góc với AM)
    * $\widehat{AMQ} = \widehat{ABM}$ (cùng phụ với $\widehat{AMB}$)
    * Mà $\widehat{ABM} = 45^\circ$ (do ABCD là hình vuông)
    * Nên $\widehat{AMQ} = 45^\circ$
    * Vậy tam giác AMQ vuông cân tại A.

* **Tam giác ANP:**
    * Ta có: $\widehat{NAP} = 90^\circ$ (do d vuông góc với AM)
    * $\widehat{ANP} = \widehat{ADN}$ (cùng phụ với $\widehat{AND}$)
    * Mà $\widehat{ADN} = 45^\circ$ (do ABCD là hình vuông)
    * Nên $\widehat{ANP} = 45^\circ$
    * Vậy tam giác ANP vuông cân tại A.

**b) Gọi giao điểm của QM và NP là R. Gọi I, K là trung điểm của đoạn thẳng MQ, PN. Chứng minh rằng AIKR là hình chữ nhật**

* **Chứng minh AIKR là hình bình hành:**
    * Ta có: I là trung điểm của MQ, K là trung điểm của PN.
    * Nên IK là đường trung bình của hình thang MNPQ.
    * Do đó IK // MN // PQ.
    * Mà AI // KR (do AI là đường trung bình của tam giác AMQ, KR là đường trung bình của tam giác ANP)
    * Vậy AIKR là hình bình hành.

* **Chứng minh AIKR là hình chữ nhật:**
    * Ta có: $\widehat{IAK} = 90^\circ$ (do AI // KR và $\widehat{IAK}$ là góc vuông)
    * Vậy AIKR là hình chữ nhật.

**c) Chứng minh rằng bốn điểm K,B,I,D thẳng hàng**

* **Chứng minh KB // ID:**
    * Ta có: KB là đường trung bình của tam giác BCP, ID là đường trung bình của tam giác DQN.
    * Nên KB // CP // DQ // ID.
    * Vậy KB // ID.

* **Chứng minh KB = ID:**
    * Ta có: KB = 1/2 CP, ID = 1/2 DQ.
    * Mà CP = DQ (do ABCD là hình vuông)
    * Nên KB = ID.

* **Kết luận:**
    * Do KB // ID và KB = ID nên KBID là hình bình hành.
    * Mà $\widehat{KBI} = 90^\circ$ (do KB // CP và $\widehat{KBI}$ là góc vuông)
    * Vậy KBID là hình chữ nhật.
    * Do đó bốn điểm K,B,I,D thẳng hàng.

## Bài 2:

**a) Chứng minh rằng BF = CE; BF ⊥ CE**

* **Chứng minh BF = CE:**
    * Ta có: ABDE và ACGF là hình vuông.
    * Nên AB = AE, AC = AF.
    * Do đó BF = BC + CF = AB + AC = AE + AF = CE.

* **Chứng minh BF ⊥ CE:**
    * Ta có: $\widehat{ABF} = 90^\circ$ (do ABDE là hình vuông)
    * $\widehat{ACE} = 90^\circ$ (do ACGF là hình vuông)
    * Nên $\widehat{ABF} + \widehat{ACE} = 180^\circ$.
    * Do đó BF ⊥ CE.

**b) Tam giác MO O1 2 là tam giác vuông cân**

* **Chứng minh MO O1 2 là tam giác vuông:**
    * Ta có: O1 là tâm hình vuông ABDE, O2 là tâm hình vuông ACGF.
    * Nên O1O2 là đường trung trực của đoạn thẳng BC.
    * Do đó MO1 = MO2.
    * Mà $\widehat{MO1O2} = 90^\circ$ (do O1O2 là đường trung trực của BC)
    * Vậy tam giác MO O1 2 là tam giác vuông tại O.

* **Chứng minh MO O1 2 là tam giác cân:**
    * Ta có: MO1 = MO2 (chứng minh trên)
    * Vậy tam giác MO O1 2 là tam giác cân tại M.

* **Kết luận:**
    * Tam giác MO O1 2 là tam giác vuông cân tại O.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
17 tháng 12 2018

a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)

=> FK là đường trung bình của tam giác ACD

=> FK//AD

=> ADKF là hình thang

Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD

=> ME // AD mà FK//AD (cmt)

=> ME//FK (1)

Chứng minh tương tự ta cũng có:

MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC

=> MF//BC ; EK // BC

=> MF//EK (2)

Từ (1) và (2) ta có: EMFK là hình bình hành

18 tháng 12 2018

Bạn biết làm câu b và câu c không

30 tháng 4 2020

R A M B H Q C D S N P

a) Xét tam giác vuông ABR và ADQ có:

AB = AD (gt)

Góc BAR + góc BAP = 90 độ

Góc DAQ + góc BAP = 90 độ

=> Góc BAR = Góc DAQ

=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)

=> AR = AQ (2 cạnh tương ứng)

=> Tam giác AQR cân tại A.

CMTT ta có tam giác ADS = tam giác ABP

=> AS = AP => Tam giác APS cân tại A.

b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.

=> AM vuông góc với QR => Góc AMH = 90 độ

Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.

=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.

Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.

Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).

Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ

=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ

=> góc NHM = 90 độ

Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ

=> AMHN là hình chữ nhật (dhnb)

c) Xét tam giác SQR có:

BC vuông góc CD => RC vuông góc SQ => RC là đường cao.

AP vuông góc AR => QA vuông góc RS => QA là đường cao.

Mà RC cắt QA tại P

Vậy P là trực tâm tam giác SQR.

d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2

    Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2

=> AN = CN => N thuộc trung trực của AC.

CMTT ta có MA = MC => M thuộc trung trực của AC.

Vậy MN là trung trực của AC.

e) Ta có BA = BC (gt) => B thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => B thuộc MN

Tương tự DA = DC (gt) => D thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => D thuộc MN

Vậy M, B, N, D thẳng hàng.