K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)

23 tháng 8 2023

Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)

23 tháng 8 2023

gì vậy?

20 tháng 7 2016

E là điểm nào vậy bạn?