K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

(mình chỉ ghi gợi ý rồi bn tự làm nha)

a, gBMD nội tiếp đường tròn=> gBMD =90 độ

ABCD là hình vuông => gDOC = 90 độ 

=> tứ giác ODME nội tiếp => gODM + gOEM = 180 độ 

mà gOEM = gBEC => dpcm

b,gABM nội tiếp chắn cung AM

gACM nội tiếp chắn cung AM => gABM = gECM

gAMB nội tiếp chắn cung AB 

gBMC nội tiếp chắn cung BC

mà cung AB = cung BC ( AB = BC )

=>gAMB = gEMC 

=> hai tam giác đồng dạng vì có hai góc bằng nhau

4 tháng 2 2020

bạn nào giúp mình câu c với ạ! Cảm ơn nhiều!!

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

17 tháng 6 2018

M A B H O N I K C D O'

1) Xét đường tròn tâm O' đường kính AN: Điểm I thuộc (O') => ^AIN=900 => ^NIB=900

Xét tứ giác NHBI: ^NHB=^NIB=900 => Tứ giác NHBI nội tiếp đường tròn (đpcm).

2) Ta có tứ giác AKNI nội tiếp (O') => ^KAI+^KNI=1800 (1)

Tứ giác NHBI nội tiếp đường tròn (cmt) => ^INH+^IBH=1800 (2)

MA và MB là 2 tiếp tuyến của (O;R) => MA=MB => \(\Delta\)AMB cân tại M

=> ^MAB=^MBA hay ^KAI=^IBH (3)

Từ (1); (2) và (3) => ^KNI=^INH

Ta thấy: ^NKI=^NAI (Cùng chắn cung NI)

Theo t/c góc tạo bởi tiếp tuyến và dây cung => NAI=^NBH

=> ^NKI=^NBH. Mà ^NBH=^NIH (Cùng chắn cung HN) => ^NKI=^NIH

Xét \(\Delta\)NHI và \(\Delta\)NIK: ^NIH=^NKI; ^KNI=^INH (cmt) => \(\Delta\)NHI~\(\Delta\)NIK (g.g) (đpcm).

3) ^NIH=^NKI. Mà ^NKI=^NAI => ^NIH=^NAI hay ^NIC=^NAB (4)

^NIK=^NAK (Chắn cung NK). Mà ^NAK=^NBA (Góc tạo bởi tiếp tuyến và dây cung)

=> ^NIK=^NBA hay ^NID=^NBA (5)

Cộng (4) & (5) => ^NIC+^NID = ^NAB+^NBA = 1800 - ^ANB = 1800-^CND

=> ^CID+^CND=1800 => Tứ giác CNDI nội tiếp đường tròn => ^NDC=^NIC

Lại có: ^NIC=^NKI=^NAI => ^NDC=^NAI (2 góc đồng vị) => CD//AI hay CD//AB (đpcm).

10 tháng 6 2020

địtmẹ thằng ngu