K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Xét \(\Delta DFM\) vuông tại F có \(\angle FDM=45\Rightarrow\Delta DFM\) vuông cân tại F

\(\Rightarrow DF=FM\)

Vì \(\angle MFA=\angle MEA=\angle EAF=90\Rightarrow AEMF\) là hình chữ nhật

\(\Rightarrow AE=FM=DF\)

Xét \(\Delta DCF\) và \(\Delta ADE:\) Ta có: \(\left\{{}\begin{matrix}AD=CD\\DF=AE\\\angle DAE=\angle CDF=90\end{matrix}\right.\)

\(\Rightarrow\Delta DCF=\Delta ADE\left(c-g-c\right)\Rightarrow DE=CF\)

b) \(\Delta DCF=\Delta ADE\Rightarrow\angle DCF=\angle ADE\)

\(\Rightarrow\angle DCF+\angle DFC=\angle ADE+\angle DFC\Rightarrow\angle ADE+\angle DFC=90\)

\(\Rightarrow DE\bot FC\)

Tương tự chứng minh được: \(BF\bot CE\)

Gọi giao điểm của DE,BF là H \(\Rightarrow H\) là trực tâm tam giác CEF

\(\Rightarrow CH\bot EF\left(1\right)\)

FM cắt CB tại G,CM cắt AD tại I

Dễ dàng chứng minh được DCFG là hình chữ nhật

\(\Rightarrow CG=DF=AE\)

Ta có: \(MG=FG-FM=CD-FD==AD-FD=AF\)

Xét \(\Delta CMG\) và \(\Delta EFA:\) Ta có: \(\left\{{}\begin{matrix}MG=AF\\AE=CG\\\angle CGM=\angle EAF=90\end{matrix}\right.\)

\(\Rightarrow\Delta CMG=\Delta EFA\left(c-g-c\right)\Rightarrow\angle AFE=\angle CMG=\angle FMI\)

\(\Rightarrow\angle AFE+\angle FIM=\angle FMI+\angle FIM\Rightarrow\angle AFE+\angle FIM=90\)

\(\Rightarrow CM\bot EF\left(2\right)\)

Từ (1) và (2) \(\Rightarrow C,H,M\) thẳng hàng \(\Rightarrow\) đpcmundefined

25 tháng 4 2016

Cậu ơi cho t hỏi tí: câu (a) ấy cái chỗ c/m AD vuông góc vs BC trình bày kiểu gì cho nó logic được ???

26 tháng 4 2016

Chào người đẹp

a) Dễ quá

b)Quá dễ

 c) ko khó

DF = DL => DB là đường trung trực của FL

=> BD vuông góc và  chia FL ra 2 đoạn bằng nhau

hay OB vừa đg cao vừa đường trung tuyến

=> tam giác FOL cân

=>OF= OL

=>BLC=90độ

chắn nữa đường tròn

d) dễ quá khỏi làm

26 tháng 4 2016

d)Gọi Q là giao điểm của (O) và SC

Vì EF song song với BQ (do RSQ=BQC=90)

=>EQ=BF;BF=BL=>EQ=BF=BL

=>góc EBQ=BQL(cùng nhìn 2 cung bằng nhau)

Mà EQ=BL

=>tứ giác BEQL là hình thang cân 

=>BQ=EL

mà tứ giác SQBR là hình chữ nhật =>RS=BQ

EL=DE+DL

=>...........

hsg có mấy chỗ tự hiểu

25 tháng 5 2016
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn ) => AB vuông góc CF BEC = 90* ( góc nội tiếp chắn nửa đường tròn ) => AC vuông góc BE Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E ) Mà BE và CF cắt nhau tại H Suy ra H là trực tâm tam giác ABC => AH vuông góc BC tại D AH . AD = AE . AC Xét tam giác AHE và ADC AEH = ADC = 90* góc A : góc chung Vậy tam giác AEH đồng dạng tam giác ADC => Nhấp chuột và kéo để di chuyển=Nhấp chuột và kéo để di chuyển => AE . AC = AD . AH b) Gợi ý nhé bạn Ta chứng minh tứ giác BFHD nội tiếp => DFH = HBD Mà HBD = CFE ( cùng chắn CE ) Nên DFH = CFE => FC là phân giác góc EFD => DFE = 2 CFE Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE ) Suy ra DFE = EOC => Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài ) c) Tứ giác EODF nội tiếp => EDF = EOF Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF ) Nên EDF = 2 ECF Tam giác DFL cân tại D => EDF = 2 FLD = 2 FLE Mà EDF = 2 ECF (cmt) Nên FLE = ECF => Tứ giác EFCL nội tiếp Mà tam giác CEF nội tiếp (O) => L thuộc (O) Tam giác BLC nội tiếp (O). Có BC là đường kính Suy ra tg BLC vuông tại L => BLC = 90* d) BIC = 90* => SRBI là hình chữ nhật => RS = BI DF = DL và OF = OL => OD là trung trực của FL =>cung BL = BF => BIL = BEF Mà BEF = EBI nên BIL = EBI => BE // LI => BLIE là hình thang cân => LE = BI Mà RS = BI (cmt) Nên EL = RS => DE + DF = RS