Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh \(BN\perp CI.\) Thực vậy, theo định lý Ta-let (Thales) ta có
\(\frac{CN}{AB}=\frac{CM}{BM}=\frac{CD}{BI}\to\frac{CN}{BC}=\frac{BC}{BI}\to\Delta CBN\sim\Delta BIC\left(c.g.c\right)\to\angle CBN=\angle CIB\to\angle BKI=90^{\circ}.\)
Vậy \(BN\perp CI.\)
a) Vì \(MC=\frac{a}{3}\to BM=\frac{2a}{3}.\) Theo định lý Thales, ta có \(\frac{CN}{AB}=\frac{CM}{BM}\to\frac{CN}{a}=\frac{1}{2}\to CN=\frac{a}{2}.\)
Xét tam giác vuông \(BCN\) có \(BC=a,CN=\frac{a}{2},\) theo hệ thức liên hệ giữa độ dài cạnh và đường cao \(\frac{1}{CK^2}=\frac{1}{BC^2}+\frac{1}{CN^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}=\frac{5}{a^2}\to CK=\frac{a}{\sqrt{5}}.\)
b) Trên tia đối của tia DC lấy điểm P sao cho DP=BM. Suy ra \(\Delta BAM=\Delta DAP\) (cạnh huyền và cạnh góc vuông). Suy ra \(AP=AM.\) Xét tam giác vuông \(APN\) với đường cao AD, ta có \(\frac{1}{AP^2}+\frac{1}{AN^2}=\frac{1}{AD^2}\to\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{a^2}\) không đổi.
Mặt khác, theo định lý Thales, ta có
\(\frac{AB}{CN}=\frac{BM}{CM}=\frac{BC-CM}{CM}=\frac{BC}{CM}-1=\frac{AB}{CM}-1\to\frac{AB}{CM}-\frac{AB}{CN}=1\to\frac{1}{CM}-\frac{1}{CN}=\frac{1}{AB}\) không đổi. (ĐPCM)
A B C D N M x K H
Hình vẽ không được đẹp cho lắm :))
Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ
Từ A lại kẻ đường thẳng vuông góc với CD tại H.
Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK
=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)
Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)
\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)
Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)
a) Xét hai tam giác IAD và LCD có:
+DA=DC
+ Góc IAD=Góc LCD=90 (độ)
+ Góc ADI=Góc LDC (cùng phụ với góc IDC)
Hai tam giác đó bằng nhau, nên DI=DL (tam giác IDL câ tại D)
b) Theo câu a) ta có DI=DL
nên: 1/DI.DI+1/DK.DK=1/DL.DL+1/DK.DK
DL và DK là hai cạnh góc vuông của tam giác vuông KDL, đường cao DC, áp dụng hệ thức lượng trong tam giác vuông (nghịch đảo bình phương đường cao, bằng tổng nghịch đảo hai cạnh góc vuông)
ta có: 1/DL.DL+1/DK.DK=1/DC.DC=1/a.a (a: cạnh hình vuông, không đổi)
tick đúng cho mih nhé
Đây là đề bài của e chị ạ, chị làm giúp em nha:
Cho hình vuông ABCD và điểm I ko thay đổi giữa A và B.Tia DI cắt BC tại E, đường thẳng qua D vuông góc với DE cắt BC tại F.
a; Chứng minh tam giác DIF vuông cân
bai nay khong ve duoc hinh vuong ban oi
Thế nếu là hcn thì làm ntn bạn