Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Do G là trọng tâm của ΔABC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
⇒ VT = 6MG
I là trung điểm của BC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)
⇒ VP = 6MI
Khi VT = VP thì MG = MI
Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG
\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\)
\(=\overrightarrow{EI}+\overrightarrow{IA}+\overrightarrow{EJ}+\overrightarrow{JB}+\overrightarrow{EI}+\overrightarrow{IC}+\overrightarrow{EJ}+\overrightarrow{JD}\)
\(=2\left(\overrightarrow{EI}+\overrightarrow{EJ}\right)+\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}\)
Bài 2:
\(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)