K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

 

 

tia.png
20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

3 tháng 3 2020

B M C N A D P Q H E F

a, Ta có: \(\widehat{MAN}=\widehat{DBC}=45^0\Rightarrow AQMB\) nội tiếp. \(\left(1\right)\)

b,  Từ \(\left(1\right)\Rightarrow\widehat{MQA}+\widehat{MBA}=180^0\Rightarrow\widehat{AQM}=90^0\left(\widehat{ABC}=90^0\right)\)

\(\Rightarrow MQ\perp AN\)

Tương tự như trên ta có: \(NP\perp AM\Rightarrow H\) là trực tâm của \(\Delta AMN\)

\(\Rightarrow AH\perp MN\left(đpcm\right)\)

c, Gọi \(AH\)\(∩\) \(MN=E\)

Gọi \(AF\perp AM,F\in CD\Rightarrow\widehat{FAD}=\widehat{BAM}\left(+\widehat{MAD}=90^0\right)\)

Lại có: \(\widehat{ADF}=\widehat{ABM}=90^0,AD=AB\Rightarrow\Delta ADF=\Delta ABM\left(g-c-g\right)\)

\(\Rightarrow AF=AM\)

Lại có: \(\widehat{NAF}=\widehat{MAN}=45^0\Rightarrow\Delta FAN=\Delta MAN\left(c-g-c\right)\)

\(\Rightarrow MN=FN\Rightarrow MN+NC+CM=NF+NC+CM=DN+CN+DF+CM\)

\(=\left(DN+CN\right)+\left(BM+CM\right)=CD+CB=2AD\)

Lại có tiếp: \(\hept{\begin{cases}AE\perp MN\\AD\perp NF\end{cases}}\Rightarrow AE=AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AE.MN=\frac{1}{2}.AD.MN\)

Lại có tiếp: \(MN\le MC+NC\)

\(\Rightarrow2MN\le MN+MC+NC=2AD\)

\(\Rightarrow MN\le AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AD.MN\le\frac{1}{2}AD^2\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}M\equiv B\\M\equiv C\end{cases}}\)

(Rối thực sự -.- )

26 tháng 5 2020

thực sự đấy, rối lắm

2 tháng 9 2018

A B C D E N F K G H P

Trên tia đối của DC lấy điểm P sao cho BE=DP

Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP

Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900

Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450

Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)

=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)

=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH

Và ^BAE = ^HAE hay ^BAG = ^HAG

=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK 

=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).

=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)

=> KG2 = DK2 + BG2 (đpcm).