Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).
a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)
\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)
b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)
\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)
bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)
C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)
\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)
\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)
A B C D O I J
a) Theo tính chất trung điểm ta có:
\(\overrightarrow{OI}=\dfrac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\).
b) Có \(k=\dfrac{OD}{OA}\) nên \(\overrightarrow{OD}=k\overrightarrow{OA}\).
Theo định lý Ta-lét\(\dfrac{OD}{OA}=\dfrac{OB}{OC}\). Vì vậy \(\overrightarrow{OB}=k\overrightarrow{OC}\).
Áp dụng tính chất trung điểm:
\(\overrightarrow{OJ}=\dfrac{1}{2}\left(\overrightarrow{OD}+\overrightarrow{OC}\right)=\dfrac{1}{2}\left(k\overrightarrow{OA}+k\overrightarrow{OB}\right)\)\(=\dfrac{k}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\).
Suy ra: \(\overrightarrow{OI}=\dfrac{k}{2}\overrightarrow{OJ}\) và dễ thấy \(k\ne0\) nên 3 điểm O, I, J thẳng hàng.
a)
A B C D M N P Q
Kẻ BD.
Trong tam giác ABD có MQ là đường trung bình nên MQ//BD và \(MQ=\dfrac{1}{2}BD\). (1)
Trong tam giác CBD có PN là đường trung bình nên PN//BD và \(NP=\dfrac{1}{2}BD\). (2)
Từ (1) và (2) suy ra: \(\overrightarrow{MQ}=\overrightarrow{NP}\).
Kẻ AC.
A B C D M N P Q
Trong tam giác ABC có MN là đường trung bình suy ra:
NM//CA và \(NM=\dfrac{1}{2}CA\). (3)
Trong tam giác DAC có PQ là đường trung bình nên:
PQ//AC và \(PQ=\dfrac{1}{2}CA\). (4)
Từ (3) và (4) suy ra: \(\overrightarrow{PQ}=\overrightarrow{NM}\).
1. Ta có MP là đường trung bình của tam giác ABD
=> MP // = 1/2 BD (1)
Ta có QN là đường trung bình của tam giác CBD
=> QN // = 1/2 BD (2)
(1) và (2) => đpcm
2. Ta có MQ là đường trung bình của tam giác ABC
=> MQ // = 1/2 AC (1)
Ta có PN là đường trung bình của tam giác ADC
=> PN // = 1/2 AC (2)
(1) và (2) => đpcm
A B C D M N Q P
a)
MN là đường trung bình của tam giác ABC nên \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\).
QP là đường trung bình của tam giác ABC nên \(\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\).
Vậy \(\overrightarrow{MN}=\overrightarrow{QP}\).
b) Giả sử:
\(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\Leftrightarrow\overrightarrow{MP}-\overrightarrow{MN}-\overrightarrow{MQ}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MP}+\overrightarrow{NM}+\overrightarrow{QM}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{QM}+\overrightarrow{MP}\right)+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{MN}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{QP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) ( Điều giả sử đúng).
Vậy \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}.\)