Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\) không đổi.
b. Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\) (ĐPCM)
cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m
BÁC NÀO BK CHỈ MK VS
chtt sẽ có câu a nhé bạn
câu b thì bạn thay góc vào là ra
còn câu c thì =))
A B C D K E F
a/ Ta có : góc KAD = góc EAB vì cùng phụ với góc DAE ; AD = AB
=> tam giác DAK = tam giác ABE (cgv.gnk)
=> AK = AE => tam giác AKE là tam giác cân
b/ Áp dụng hệ thức về cạnh trong tam giác vuông : \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AK^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\) không đổi
a, HS tự chứng minh
b, HS tự chứng minh
c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I
d, HS tự chứng minh
b: góc FAK=góc FCK=90 độ
=>ACFK nội tiếp
=>góc CAF=góc CKF
a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ
=>ΔAKF vuông cân tại A
bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ