K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2020

Hai tam giác vuông DAM và ABN bằng nhau (cạnh cạnh cạnh)

\(\Rightarrow\widehat{ADM}=\widehat{BAN}\)\(\widehat{BAN}+\widehat{DAN}=90^0\Rightarrow\widehat{ADM}+\widehat{DAN}=90^0\)

\(\Rightarrow AN\perp DM\Rightarrow\) đường thẳng AN nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình AN:

\(3\left(x-\frac{7}{2}\right)-1\left(y-\frac{3}{2}\right)=0\Leftrightarrow3x-y-9=0\)

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}2x-y-6=0\\3x-y-9=0\end{matrix}\right.\) \(\Rightarrow A\left(3;0\right)\)

\(\Rightarrow\overrightarrow{AN}=\left(\frac{1}{2};\frac{3}{2}\right)\Rightarrow AN=\frac{\sqrt{10}}{2}\)

Pitago tam giác ABN: \(AB^2+BN^2=AN^2\)

\(\Rightarrow AB^2+\frac{1}{4}AB^2=\frac{5}{2}\Rightarrow AB^2=S_{ABCD}=2\)

Gọi \(B\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(x-3;y\right)\\\overrightarrow{NB}=\left(x-\frac{7}{2};y-\frac{3}{2}\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB\perp BN\\AB^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x-\frac{7}{2}\right)+y\left(y-\frac{3}{2}\right)=0\\\left(x-3\right)^2+y^2=2\end{matrix}\right.\)

Giải hệ này tìm x; y (rút gọn, trừ vế cho vế, rút y theo x rồi thay vào 1 trong 2 pt giải)

Có tọa độ B \(\Rightarrow\) tọa độ C (thông qua N là trung điểm BC)

Viết pt CD qua C (đã biết) và song song AB (đã biết vtcp nên biết vtpt của CD)

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 
30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

6 tháng 4 2016

D G F C N E O M B H K J I A

Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)

Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)

Phương trình cạnh MO qua M có vec tơ chỉ phương \(\overrightarrow{MO}\) là \(9x-5y-24=0\)
=> Phương trình cạnh NE qua N và vuông góc với MO là \(5x+9y-22=0\)
Gọi E là hình chiếu của N trên MG\(\Rightarrow E=NE\cap MG\Rightarrow E=\left(\frac{163}{53};\frac{39}{53}\right)\)
Lại có \(NE\perp MG\Rightarrow\begin{cases}NJ=MG\\\overrightarrow{NE}=k\overrightarrow{NJ}\end{cases}\) \(\left(k\ne0,k\in R\right)\) \(\Rightarrow J\left(-1;3\right)\) vì \(\overrightarrow{NE,}\overrightarrow{NJ}\) cùng chiều
Suy ra phương trình cạnh AD : \(x+1=0\Rightarrow OK=\frac{9}{2}\). Vì KA=KO=KD nên K, O, D thuộc đường tròn tâm K đường kính OK
Đường tròn tâm K bán kính OK có phương trình : 
\(\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\)
Vậy tọa độ điểm A và D là nghiệm của hệ \(\begin{cases}\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\\x+1=0\end{cases}\)
                                                           \(\Leftrightarrow\begin{cases}\begin{cases}x=-1\\y=6\end{cases}\\\begin{cases}x=-1\\y=-3\end{cases}\end{cases}\)
Suy ra \(A\left(-1;6\right);D\left(-1;-3\right)\Rightarrow C\left(8;-3\right);B\left(8;6\right)\)
Trường hợp \(D\left(-1;6\right);A\left(-1;-3\right)\) loại do M thuộc CD
9 tháng 4 2016

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

24 tháng 7 2016

cho mình hỏi vì sao góc HIE = 2 HAE

 

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0