K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: AB=BC=CD=DA=6a

\(AC=BD=\sqrt{\left(6a\right)^2+\left(6a\right)^2}=6a\sqrt{2}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=6a\)

\(\left|\overrightarrow{BC}+\overrightarrow{BD}\right|=\sqrt{BC^2+BD^2+2\cdot BC\cdot BD\cdot cos45}\)

\(=\sqrt{36a^2+72a^2+\sqrt{2}\cdot6a\cdot6a\sqrt{2}}\)

\(=6a\sqrt{5}\)

b: \(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=6a\cdot6a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}\)

\(=36a^2\)

30 tháng 3 2017

Đẳng thức đúng là: \(\overrightarrow{AB}+\overrightarrow{BD}=2\overrightarrow{BC}\)

Vậy chọn câu a)

13 tháng 8 2019

\(a\text{) }\overrightarrow{AB}-\overrightarrow{CD}=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)-\overrightarrow{CD}\\ =\overrightarrow{AC}-\left(\overrightarrow{CD}-\overrightarrow{CB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(b\text{) }\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}=\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)\\ =\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{AD}+\overrightarrow{DA}=0\)

\(c\text{) }\overrightarrow{AC}+\overrightarrow{DE}-\overrightarrow{DC}-\overrightarrow{CE}+\overrightarrow{CB}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DE}-\overrightarrow{DC}\right)-\overrightarrow{CE}\\ =\overrightarrow{AB}+\overrightarrow{CE}-\overrightarrow{CE}=\overrightarrow{AB}\)

\(d\text{) }\overrightarrow{AB}+\overrightarrow{DE}+\overrightarrow{CF}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)+\left(\overrightarrow{CE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}+\left(\overrightarrow{FE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

31 tháng 7 2019

Hỏi đáp Toán

18 tháng 5 2017

A B C D B' O
\(cos\left(\overrightarrow{AC};\overrightarrow{BA}\right)=cos\left(\overrightarrow{AC};\overrightarrow{AB'}\right)=cos\widehat{CAB'}=cos135^o\)\(=\dfrac{\sqrt{2}}{2}\).
\(sin\left(\overrightarrow{AC};\overrightarrow{BD}\right)=sin90^o=1\) do \(AC\perp BD\).
\(cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)=cos180^o=-1\) do hai véc tơ \(\overrightarrow{AB};\overrightarrow{CD}\) ngược hướng.

 

18 tháng 5 2017

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10

NV
22 tháng 11 2019

Tất cả biểu thức đều là vecto, cái nào là độ dài thì nằm trong trị tuyệt đối:

\(\left|BD\right|=\sqrt{AB^2+AD^2}=a\sqrt{5}\)

\(\left|AC\right|=\sqrt{AB^2+BC^2}=a\sqrt{13}\)

a/ \(AB.BD=-BA.BD=-\left|AB\right|.\left|BD\right|.cos\widehat{ABD}\)

\(=-2a.a\sqrt{5}.\frac{2a}{a\sqrt{5}}=-4a^2\)

\(BC.BD=\left|BC\right|.\left|BD\right|.cos\widehat{DBC}=3a.a\sqrt{5}.\frac{a}{a\sqrt{5}}=3a^2\)

\(AC.BD=AC\left(BA+AD\right)=AC.BA+AC.AD\)

\(=AC.AD-AC.AB=\left|AC\right|.\left|AD\right|.cos\widehat{DAC}-\left|AB\right|.\left|AC\right|.cos\widehat{BAC}\)

\(=a.a\sqrt{13}.\frac{3a}{a\sqrt{13}}-2a.a\sqrt{13}.\frac{2a}{a\sqrt{13}}=-a^2\)

\(AC.IJ=\frac{1}{2}AC\left(AD+BC\right)=\frac{1}{2}AC.AD+\frac{1}{2}AC.BC\)

Ta có \(AC.AD=3a^2\) (ngay bên trên)

\(AC.BC=CA.CB=\left|CA\right|.\left|CB\right|.cos\widehat{BCA}=a\sqrt{13}.3a.\frac{3a}{a\sqrt{13}}=9a^2\)

\(\Rightarrow AC.IJ=6a^2\)

22 tháng 11 2019

thanks bn nhìu :>

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

NV
29 tháng 10 2020

Câu 1:

\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)

Đáp án D sai

Câu 2:

\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)

Ta có:

\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)

\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

Đáp án A đúng