K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Ta cóBDA+ADC=BDC 10\(^o\)+50\(^o\)=60\(^o\)

Xét tam giác ADCvuông tại C:

\(AC=CD.tanADC\)

\(\Rightarrow AC=40.tan50^o\)

\(\Leftrightarrow AC\approx47,67cm\)

Xét tam giác BDC vuông tại C có:

\(CB=CD.\tan BDC\)

\(\Rightarrow CB=40.tan60^o\)

\(\Leftrightarrow CB\approx69,28cm\)

Ta có \(AB=BC-AC=69,28-47,67=21,61cm\)

 

a: AB=DC=8cm

Xét ΔADC vuông tại A có cosD=AD/DC

=>AD=3,38(cm)

b: Xét ΔCAB vuông tại C và ΔHAD vuông tại H có

góc CAB=góc HAD(=góc ACD)

=>ΔCAB đồng dạng với ΔHAD

=>CA/HA=CB/HD

=>CA*HD=CB*HA

7 tháng 12 2021

hình vẽ đâu ạ ?

 

7 tháng 12 2021

đề của bạn sai rồi

 

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0

a: AC=9

b: \(\tan B=\dfrac{AC}{AB}=\dfrac{9}{12}\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}=\dfrac{4}{5}\)

nên \(\widehat{C}=53^0\)

12 tháng 8 2023

Hình vẽ đâu em?

12 tháng 8 2023

K có hình ạ