Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K M N H O
1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN
Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).
2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600
Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.
3) Hệ thức cần chứng minh tương đương với:
2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)
<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)
<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK
<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK
<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)
Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM2 - AN2 - MN2) (đpcm).
Tự vẽ hình nhé!
a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)
\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược
\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)
b, Gọi C là trung điểm dây AB ta có C cố định
(d) không qua O nên \(OC\perp AB\)
\(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)
\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM
\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn
Mà O và C cố định
Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)
c, Tứ giác MNOP là hình vuông
\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\)Tam giác OMN vuông cân tại N \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)
\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)
d, từ nghĩ đã...
\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)
cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó
d, Làm tiếp:
Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'
OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))
\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)
\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\) ; \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)
Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)
\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP
Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)
Mặt khác : O , I cùng thuộc nửa mặt phẳng bờ d
Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R
Có \(\hept{\begin{cases}HK\perp KC\\HI\perp IC\end{cases}\Rightarrow\widehat{HKC}+\widehat{HIC}=90^o+90^o=180^o}\)
=> tứ giác CIHK nội tiếp
Do tứ giác CIHK nội tiếp nên \(45^o=\widehat{ICK}-\widehat{BHI}=\frac{1}{2}sđ\widebat{BM}+\frac{1}{2}sđ\widebat{AN}\)
\(\Rightarrow sđ\widebat{BM}+sđ\widebat{AN}=90^o\)
=> \(sđ\widebat{MN}=sđ\widebat{AB}+\left(sđ\widebat{BM}+sđ\widebat{AN}\right)\)hay MN là đường kính của (O)
=90o+90o=180o
Do MN là đường kính của (O) nên MA _|_ DN, NB_|_ DM
Do đó, H là trực tâm \(\Delta\)DMN hay DH _|_ MN
Do I;K cùng nhìn AB dưới góc 90o nên tứ giác ABIK nội tiếp
=> \(\widehat{CAI}=\widehat{CBK}\)=> \(sđ\widebat{CM}=sđ\widebat{CN}\)
=> C là điểm chính giữa cung MN => CO _|_ MN
Vì AC>BC nên \(\Delta\)ABC không cân tại C
Do đó: C;O;H không thẳng hàng
=> CO//DH
a) Ta có: AM là phân giác \(\widehat{BAC}\)=> \(\widehat{BAM}\)= \(\widehat{CAM}\)=> \(\widebat{BM}\)=\(\widebat{CM}\)
=> BM = CM
mà OB=OC (bán kính (O))
=> OM là đường trung trực của BC => OM đi qua tđ N của BC
b) Từ A vẽ đường kính AQ => tam giác ACQ vuông tại C => \(\widehat{CAO}\)+ \(\widehat{AMC}\)=90 (1)
AK là đg cao => tam giác AKB vuông tại K => \(\widehat{BAK}\)+ \(\widehat{ABK}\)=90 (2)
mà \(\widehat{AMC}\)= \(\widehat{ABK}\)(cùng chắn \(\widebat{AC}\)) (3)
Từ (1),(2),(3) => \(\widehat{CAO}\)= \(\widehat{BAK}\)
mà \(\widehat{BAM}\)= \(\widehat{MAC}\)(cmt)
\(\widehat{BAM}\)= \(\widehat{BAK}\)+ \(\widehat{KAM}\)
\(\widehat{MAC}\)= \(\widehat{CAO}\)+\(\widehat{MAO}\)
=> \(\widehat{KAM}\)= \(\widehat{MAO}\)
A B P S D C M E F O H K
a) Ta thấy 2 tiếp tuyến tại M và B của đường tròn (O) giao nhau tại D => ^OMD=^OBD=900
=> Tứ giác MOBD nội tiếp đường tròn => ^ODM=^OBM (Cùng chắn cung OM) (1)
Ta có: ^CAM + ^MAB = 900. Mà ^MAB + ^OBM = 900 => ^CAM=^OBM (2)
Từ (1) và (2) => ^CAM=^ODM (đpcm).
b) Gọi giao điểm của tia FE là tia AB là S. Ta sẽ đi chứng minh S trùng với P.
Thật vậy: Ta gọi giao điểm của SM với AF và BE lần lượt là H và K.
Dễ thấy: BE // AF (Quan hệ song song vuông góc)
Áp dụng hệ quả ĐL Thales, ta có các tỉ số sau: \(\frac{EK}{AH}=\frac{BE}{AF}=\frac{SB}{SA};\frac{BK}{AH}=\frac{SB}{SA}\)
\(\Rightarrow\frac{EK}{AH}=\frac{BK}{AH}\Rightarrow EK=BK\)
=> K là trung điểm của BE (3)
Lại có: DB và DM là 2 tiếp tuyến của (O) => DB=DM => \(\Delta\)MDB cân đỉnh D
=> ^DBM=^DMB. Do ^DMB + ^DME = 900 => ^DBM + ^DME = 900
Mà ^DBM + ^DEM = 900 => ^DEM=^DME => \(\Delta\)EDM cân tại D => DE=DM
Mà DB=DM (cmt) => DE=DB => D là trung điểm của EB (4)
Từ (3) và (4) => D trùng với K. Tương tự ta chứng minh được C trùng với H.
=> 3 điểm C;D;S thẳng hàng => CD cắt AB tại S
Theo giả thiết: CD giao AB tại P => S trùng với P
Mà tia FE đi qua điểm S => FE đi qua điểm P => 3 điểm E;F;P thẳng hàng (đpcm).