K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 9 2021
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{\sqrt{\sqrt{2}\cdot\sqrt{8}}\cdot3\sqrt{2}}{2}\)
\(=3\sqrt{2}\left(cm^2\right)\)
5 tháng 5 2021
có
<=>352=2\(\pi\).7.h<=>352=14\(\pi\).h<=>h=352/(14.\(\pi\))
<=>h\(\approx\)8cm( nếu lấy\(\pi\) \(\approx\)3,14)
18 tháng 8 2023
a: \(AB=\sqrt{CA^2+CB^2}=25\left(cm\right)\)
Xét ΔABC vuông tại C có sin A=BC/BA=4/5
nên góc A\(\simeq\)53 độ
=>góc B=90-53=37 độ
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*25=15*20=300
=>CH=12(cm)
b: ΔHCA vuông tại H có HE là đường cao
nên CE*CA=CH^2
ΔCHB vuông tại H có FH là đường cao
nên CF*CB=CH^2
=>CE*CA=CF*CB
Bài là tam giác vuông hả bạn?
Ta có : BC = BH + CH = \(\sqrt{2}+\sqrt{8}=3\sqrt{2}\)
Xét △ ABC vuông tại A, đường cao AH có:
\(AB^2\)=BH.BC ( hệ thức lượng trong tam giác vuông)
=> \(AB^2=\sqrt{2}.3\sqrt{2}=6\)
=> \(AB=\sqrt{6}\)
\(AC^2=BC.HC\)
=> \(AC^2=\sqrt{8}.3\sqrt{2}=12\)
=>\(AC=2\sqrt{3}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.\sqrt{6}.2\sqrt{6}=3\sqrt{2}\left(cm^2\right)\)