Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2\right|+\left|y+3\right|=\left|x-2\right|+\left|-y-3\right|\)
\(\ge\left|x-2-y-3\right|=\left|x-y-5\right|=3\)
Dấu "=" xảy ra khi \(x=y+2\)
Vậy với \(x=y+2\) thì \(A_{Min}=3\)
Ta có \(\widehat{aIK}=\widehat{IKb'}\Rightarrow aa'//bb'\)
=> \(\widehat{a'Ic}=\widehat{bKc'}=\widehat{aIK}=28^{\text{o}}\)
Lại có \(\widehat{a'IK}=180^{\text{o}}-\widehat{aIK}=180^{\text{o}}-28^{\text{o}}=152^{\text{o}}=\widehat{aIC}=\widehat{c'Kb'}\)
Vì IKb và IKb' là 2 góc kề bù \(\Rightarrow\)IKb = 180o - 28o = 152o
Vì aa' // bb' , IKb và KIa' là 2 góc so le trong bằng nhau \(\Rightarrow\)KIa' = 152o
Vì cIa và KIa' là 2 góc đối đỉnh \(\Rightarrow\)cIa = 152o
Vì cIa' và KIa là 2 góc đối đỉnh \(\Rightarrow\)cIa' = 28o
Vì IKb và b'Kc' là 2 góc đối đỉnh \(\Rightarrow\)b'Kc' = 152o
Vì IKb' và bKc' là 2 góc đối đỉnh \(\Rightarrow\)bKc' = 28o
Câu 2:
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x+2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó: \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\)
Vậy \(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\).
Câu 3:
x.x=64=>x=8 hoặc x=-8 mà x.x.x<0 =>x<0
Vậy x=-8
Câu 5:
ta có: nghiệm của đa thức f(x)=x^4 - 16 =0
=> x^4 = 16
=> x= 2 hoặc x= -2
Câu 6:
ta có: f(x1) + f(x2) = 2.x1 + 3 + 2.x2 +3
= 2.(x1 + x2) + 3+ 3
=2.5+6
=16
vậy f(x1) + f(x2)=16
Câu 7:
vì đa thức f(x) =a.x + b có nghiệm x = 1
=> a.1 + b = 0
=> a+b=0 (1)
vì f(0) =5 => a.0+b= 5
=> 0+b = 5
=> b = -5
từ (1) ta có: a+ (-5)=0
=>a=5
vậy a=5 và b=-5
BT1.
Ta có: \(2009^{20}=2009^{10}\times2009^2\)và \(20092009^{10}=2009^{10}\times10001^{10}\)
Rõ ràng \(2009^2< 10001^{10}\\ \Rightarrow2009^{10}\times2009^2< 2009^{10}\times10001^{10}\\ \Rightarrow2009^{20}< 20092009^{10}\left(đpcm\right)\)
BT9. Bn xem lại đề bài đi. \(x^2+x+1\) luôn lớn hơn 0 mà bn.
BT3.
Giả sử \(M\in N\)
Nên:
\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+x+t}\in N\\\dfrac{z}{z+t+y}\in N\\\dfrac{t}{t+z+x}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+x+t\\z⋮z+t+y\\t⋮t+z+x\end{matrix}\right.\)
Vì \(x,y,z,t\in N\)*\(\Rightarrow x,y,z,t>0\)\(\Rightarrow\left\{{}\begin{matrix}x>x+y+z\\y>x+y+t\\z>y+z+t\\t>x+z+t\end{matrix}\right.\)(vô lí)
Vậy rõ ràng điều giả sử là vô lí. Nên \(M\notin N\left(đpcm\right)\)
Mình chỉ giúp đc đến đây thôi, mong bn thông cảm
Ngoài ra, chúc bn học tốt nhé
Bài toán 2.
Ta có: \(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+....+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(=\dfrac{2009-1}{1}+\dfrac{2009-2}{2}+\dfrac{2009-3}{3}+...+\dfrac{2009-2008}{2008}\)
\(=2009-1+\dfrac{2009}{2}-1+\dfrac{2009}{3}-1+....+\dfrac{2009}{2008}-1\)
\(=2009+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{....1}{2008}\right)-1.2008\)
\(=\left(2009-2008\right)+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)
\(=1+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)
\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
=\(2009.A\)
Do đó, tỉ số \(\dfrac{A}{B}=\dfrac{A}{2009.A}=\dfrac{1}{2009}\)