Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy điểm I trong hình vuông ABCD sao cho tam giác IBC cân và có góc đáy bằng 15°. Ta tính được góc BIC = 150°
Ta có: ΔIBC = ΔEAB ⇒ IB = EB
Lại có: góc EBI = 90° - 15° - 15° = 60°
⇒ ΔEBI đều
⇒ IE = IB = IC
⇒ ΔIEC cân tại I
⇒ góc EIC = 360° - góc BIC - góc EIB = 360° - 150° - 60° = 150°
Tam giác cân IEC có góc ở đỉnh bằng 150° nên góc ICE = 15°
góc ECD = 90° - góc ICB - góc ICE = 90° - 15° - 15° = 60°
Tương tự cho góc kia: góc EDC = 60°
Vậy tam giác DEC đều.
Có làm thì mới có bài, không làm muốn có bài thì chỉ ăn cơm ăn đầu lợn
Bài 3:
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
b: Xét tứ giác BEFC có
BE//CF
BE=CF
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình chữ nhật thì EM=FN
=>ED=AF
=>AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)