Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác NPA và tam giác CBP có
AP=PB ; goc APN= goc CPB ; goc PAN = goc PBC (ND//BC)
==> tam giác APN = tam giác BPC ( g.c.g)
b. vì ÁP//DC ==> tam giác NPA đồng dạng với NCD
mà tam giác NPA đồng dạng với tam giác CPB
==> tam giác CPB đồng dạng với tam giác NCD
a: Xét ΔPBC và ΔPAN có
góc PBC=góc PAN
BP=AP
góc BPC=góc APN
=>ΔPBC=ΔPAN
=>PN=PC
=>P là trung điểm của CN
b: Xét ΔDNC và ΔBCP có
góc NDC=góc PBC
góc DNC=góc PCB
=>ΔDNC đồng dạng vói ΔBCP
a
Dễ thấy \(\Delta\)BEC và \(\Delta\)DCF đồng dạng ( g.g ) nên \(\frac{BE}{DC}=\frac{EC}{CF}=\frac{BC}{DF}\)
\(\Rightarrow\)BE.DF=BC.DC=BC2 không đổi
b
Ta có:^ABD=\(\frac{1}{2}\)^ABC=\(\frac{1}{2}\)1200=600 \(\Rightarrow\)^EBD=1800-600=1200
Tương tự:^BDF=1200
Ta có:\(\frac{EB}{BC}=\frac{CD}{DF}\Rightarrow\frac{BE}{BD}=\frac{BD}{DF}\) ( để ý góc A bằng 600 và ABCD là hình thoy )
Khi đó \(\Delta\)EBD và \(\Delta\)BDF đồng dạng ( c.g.c ) \(\Rightarrow\)^DBF=^BED
Mà ^BED+^BDI=1200 nên ^DBI+^BDI=1200 hay ^BID=1200
c
Để nghĩ sau
Cảm ơn bạn nhiều nha, bạn giỏi quá. Đây là lần thứ 2 mình đăng câu hỏi, mình cần rất gấp mà lần đầu không ai giúp mình :(((