Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình:
a)ta có:
BC//AD nên
góc BCA= góc CAD ( so le trong )
mà góc CAD= góc BAC ( AC là p/g của góc BAD)
=>góc BCA= góc BAC
=> tam giác ABC cân tại A
b)
tam giác ABC cân tại A => góc BAC= góc BCA =60o/2=30o
ta có: góc ABC+góc BCA + góc BAC=180o ( định lí tổng 3 góc của 1 tam giác )
=> góc ABC=180o-30o-30o
=120o
mà góc ABC=góc BCD = 120o (ABCD là hình thang cân )
=> góc ACD= góc BCD- góc BCA
=120o-30o
=90o
suy ra: AC vuông góc với CD
c) Xét tam giác ABC và tam giác DCB
BC : cạnh chung
góc ABC= góc BCD ( ABCD là hình thang cân )
AB=CD ( ABCD là hình thang cân )
suy ra tam giác ABC= tam giác DCB ( c-g-c)
=> góc BAC= góc CDB ( 2 góc tương ứng )
mà góc BAC+ góc CAD= góc BAD
góc CDB+ góc BDA = góc CDA
kết hợp với góc BAD=góc CDA (ABCD là hình thang cân )
=> góc CAD = góc BCA
=> tam giác AMD cân tại M
=>MA=MD
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
b: Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BCA}=\widehat{CAD}\)
nên \(\widehat{BAC}=\widehat{DAC}\)
hay AC là tia phân giác của \(\widehat{BAD}\)