Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành
mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP
tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)
b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm
QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm
Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm
Bạn ơi lẽ ra chỗ diện tích hcn là phải bằng = 3 . 4 = 12cm chứ nhỉ bạn
Bài 1:
A B C D O M N P Q
a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)
\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)
CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)
\(NP=\frac{1}{2}BC\left(3\right)\)
\(PQ=\frac{1}{2}DC\left(4\right)\)
Mà AB=BC=CD=DA (tc) (5)
Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)
Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb) (6)
Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)
\(\Rightarrow MQ\perp MN\)
\(\Rightarrow\widehat{QMN}=90^0\)(7)
Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )
b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)
mà \(AD=16\left(cm\right)\)
\(\Rightarrow MQ=8\left(cm\right)\)
\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)
\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)
Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)
A B D C O K H
Kẻ \(BH\perp AD,CK\perp AD\)
\(\Rightarrow BH//CK\)
Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )
Xét tam giác ABD và tam giác ACD có:
2 đường cao BH,CK = nhau , đáy AD chung
\(\Rightarrow S_{ABD}=S_{ACD}\)
\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)
\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)
PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn