Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ 1 đg vuông góc từ B cắt DC tại K
xét tg ADH và tg BCK :
góc AHD= góc BKC ( = 90 độ )
AD= BC ( gt )
góc ADH= góc BCK ( gt )
=> tg ADH= tg BCK ( ch- gn)
=> DH= KC ( 2 cạnh t/ứ ) ( 1)
vì AB song song DC=> ABKD là hcn ( tự chứng minh)
=> AB=Dk= 8 cm
=> DH= KC= (DC-DK ) :2= 3 cm
áp dụng đlí pi-ta-go cho tg ADH vuông ở H :
AH2+DH2= AD2
TS : AH2= 52-32
=> AH = 4 cm
Ông bao nhiêu năm thì cháu bấy nhiêu tháng => Tuổi ông gấp 12 lần tuổi cháu.
Hiệu số phần bằng nhau là:
12 - 1 = 11 ( phần )
Tuổi của ông là:
77 : 11 x 12 = 84 ( tuổi )
Tuổi của cháu là:
84 - 77 = 7 ( tuổi )
Đáp số : ...................
A B C D H K M N E F 4cm
xét tg ADH và tg BCK có: ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)
=> tg ADH=tg BCK (ch-gn) => DH=CK
b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD
và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)
xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC
=> NF=1/2.AB=1/2.4=2(cm)
c/m tương tự ta đc: ME=2cm
ta có: MN=ME+EF+FN ( vì E,F thuộc MN)
=> 7 =2+EF+2 => EF=3 (cm)
Vậy độ dài cạnh EF là 3cm
TỨ GIÁC ABHK LÀ HCN DẤU HIỆU 1
B)
TAM GIÁC AHD= TAM GIÁC BCK (CH-CGV)VÌ
GÓC H = GÓC K ( CÙNG BẰNG 90 ĐỘ)
AH=AK(ABHK LÀ HCN)
AD=BC(ABCD LÀ HÌNH THANG CÂN)
SUY RA DH=KC ( HAI CẠNH TƯƠNG ỨNG)
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có
AD=BC(ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADH=ΔBCK(Cạnh huyền-góc nhọn)
Suy ra: AH=BK(hai cạnh tương ứng)
Xét tứ giác AHKB có
AH//BK
AH=BK
Do đó: AHKB là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên AHKB là hình chữ nhật
b) Ta có: AB=HK(AHKB là hình chữ nhật)
mà AB=8cm(gt)
nên HK=8cm
\(\Leftrightarrow DH=CK=\dfrac{DC-HK}{2}=\dfrac{14-8}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Leftrightarrow HC=HK+KC=8+3=11\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow AH^2=5^2-3^2=16\)
hay AH=4(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=4^2+11^2=137\)
hay \(AC=\sqrt{137}\left(cm\right)\)
\(\Leftrightarrow BD=\sqrt{137}\left(cm\right)\)