K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

Theo bài ra Cạnh AD=40cm, DM=10cm, nên AM = 40 - 10 = 30(cm); do đó AM = 3/4 AD hay AM = 3x MD. Từ M kẻ đường thẳng song song với DC và cắt BC tại N ( đối với HSTH có thể "chấp nhận" BN = 3/4 BC = 3x NC); hoặc các em có thể chứng tỏ như sau: S(BMN) = 3x S(NMC) ( Vì hai tam giác có chung đáy MN và đường cao hạ từ B xuống MN = 3 lần đường cao hạ từ C xuống MN...)

Từ đó ta có: NC = 1/3 BN ; hay BN = 3/4 BC.

S(ABCD); S(ABM); S(MCD) tính được

S(BMC) = S(ABCD) - S(ABM) - S(MCD)

Mà S(BMN) = 3/4 S(BMC)..... nên cũng tính được....từ đó tính được S(ABNM).

24 tháng 7 2016

N là giao điểm của những đường nào vậy bạn?

 

24 tháng 7 2016

từ M kẻ đường thẳng song song với CD,cắt AC tại N

 

14 tháng 10 2016

nhớ giúp mình nha .Ai trả lời đúng mình k cho 5 cái nhà.Mình hứa đó

23 tháng 7 2016

Điểm N đâu có cho đâu bạn

23 tháng 5 2018

Hình bạn tự vẽ nha

a)Ta có : BM=BA-AM=30-20=10(cm)

Diện tích tam giác BCM là

S=\(\frac{BM.AC}{2}\)=\(\frac{10.36}{2}\)=180\(cm^2\)

b) Mình làm theo Dịnh lí Ta- lét trong tam giác ABC có MN//BC có:

\(\frac{AM}{AB}=\frac{AN}{AC}\)

<=>\(\frac{20}{30}=\frac{AN}{36}\)

<=>AN=24(cm)

Tứ đó ta có Sbcnm=Sbac-Samn=\(\frac{30.36}{2}\)-\(\frac{24.20}{2}\)=540-240=300(\(cm^2\))

16 tháng 7 2015

Chịu mik có phải giáo viên đâu.

16 tháng 8 2017

hình như là zậy

Cho hình thang ABCD,các cạnh đáy AB = a và CD = b,Qua giao điểm O của hai đường chéo,Kẻ đường thẳng song song với AB,cắt AD và BC theo thứ tự ở E và G,Chứng minh 1/OE = 1/OG = 1/a + 1/b,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

2 tháng 10 2016

10cm 40cm D A B C E 50cm

Nối \(AE\), tam giác \(EAC\) có chiều cao bằng độ dài đoạn \(AD=10cm\).

Diện tích tam giác \(EAC\) bằng:

\(\frac{50\times10}{2}=250\left(cm^2\right)\)

Diện tích tam giác \(ABC\) bằng:

\(\frac{50\times40}{2}=1000\left(cm^2\right)\)

Diện tích tam giác \(BAE\) ( bằng diện tích tam giác \(ABC\) trừ đi diện tích tam giác \(EAC\) ):

\(1000-250=750\left(cm^2\right)\)

Chiều cao \(ED\) của tam giác \(BAE\) bằng:

\(\frac{750\times2}{40}=37,5\left(cm\right)\)

Độ dài cạnh \(BC\) bằng:

\(50-10=40\left(cm\right)\)

Vì \(DE\) song song với \(AC\) nên \(DE\) vuông góc với \(BD\). Vậy tam giác \(BDE\) là tam giác vuông tại \(D\) và có diện tích bằng:

\(\frac{40\times37,5}{2}=750\left(cm^2\right)\)

Đáp số\(750cm^2\)

2 tháng 10 2016

B A D C E 40cm 10cm 50cm

\(S\) \(ABC:\frac{40\times50}{2}=1000\left(cm^2\right)\)

\(S\) \(AEC:\frac{50\times10}{2}=250\left(cm^2\right)\)

\(S\) \(ABE:1000-250=750\left(cm^2\right)\)

\(DE:\frac{750\times2}{40}=37,5\left(cm\right)\)

\(S\) \(BDE:\frac{37,5\times30}{2}=562,5\left(cm^2\right)\)