Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)
Do đó \(AH=CI\)
Mà AH//CI (⊥BD) nên AHCI là hbh
b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC
Do đó A đối xứng C qua M
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
A B C D M N I H
Từ M kẻ đường thẳng vuông góc với AD cắt BD tại I. Hạ DH vuông góc BC tại H
Ta có: AB vuông góc AD; MI vuông góc AD => AB // MI => ^MIB = 1800 - ^ABD
Xét \(\Delta\)ADB: ^BAD = 900; AB=AD => \(\Delta\)ADB vuông cân tại A => ^ABD = 450
=> ^MIB = 1350 (1)
Dễ thấy tứ giác ADHB là hình vuông => DH=BH=AB=1/2BC => DH=BH=CH = 1/2BC
=> \(\Delta\)BDC vuông tại D => ^BDC = 900 => ^MDN = ^BDC + ^ADB = 900 + 450 = 1350 (2)
(1) + (2) => ^MIB = ^MDN
Xét \(\Delta\)MIB & \(\Delta\)MDN: ^MIB = ^MDN; IM=DM (Dễ c/m); ^IMB = ^DMN (Cùng phụ ^IMN)
=> \(\Delta\)MIB = \(\Delta\)MDN (g.c.g) => MB=MN (đpcm).
a)
Lấy K làm trung điểm của BC
=> MK là đường trung bình của hình thang ABCD
\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)
Tam giác MBC vuông tại M, MK là trung tuyến
\(\Rightarrow MK=\frac{BC}{2}\)(**)
Từ (*) và (**) => AB + CD = BC
b)
Ta có:
\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{DMC}\)
\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)
Ta có:
\(\widehat{HMC}=\widehat{DCM}\)
\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)
\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)
=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)
\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang
A B E D C M H