K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)

Do đó \(AH=CI\)

Mà AH//CI (⊥BD) nên AHCI là hbh

b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC

Do đó A đối xứng C qua M

11 tháng 8 2016

ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc

3 tháng 8 2017

kéo dài DA và CB cắt nhau tại K 

AB là đường trung bình ( AB//DC và 2AB = DC) 

=> B là trung điểm KC 

=> DB là trung tuyến  ΔKDC vuông tại D 

=> DB = BC = DC 

=> tam giác DBC đều 

Vậy góc KCD= 60độ 

tổng 4 góc trong tứ giác ABCD = 360độ 

=> góc ABC = 120độ

cách 2

Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật

nên ^ABH=90* (1)

Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)

Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*

11 tháng 7 2018

A B C D M N I H

Từ M kẻ đường thẳng vuông góc với AD cắt BD tại I. Hạ DH vuông góc BC tại H

Ta có: AB vuông góc AD; MI vuông góc AD => AB // MI => ^MIB = 1800 - ^ABD

Xét \(\Delta\)ADB: ^BAD = 900; AB=AD => \(\Delta\)ADB vuông cân tại A => ^ABD = 450

=> ^MIB = 1350 (1)

Dễ thấy tứ giác ADHB là hình vuông => DH=BH=AB=1/2BC => DH=BH=CH = 1/2BC

=> \(\Delta\)BDC vuông tại D => ^BDC = 900 => ^MDN = ^BDC + ^ADB = 900 + 450 = 1350 (2)

(1) + (2) => ^MIB = ^MDN

Xét \(\Delta\)MIB  & \(\Delta\)MDN: ^MIB = ^MDN; IM=DM (Dễ c/m); ^IMB = ^DMN (Cùng phụ ^IMN)

=> \(\Delta\)MIB = \(\Delta\)MDN (g.c.g) => MB=MN (đpcm).

a)

Lấy K làm trung điểm của BC

=> MK là đường trung bình của hình thang ABCD

\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)

Tam giác MBC vuông tại M, MK là trung tuyến

\(\Rightarrow MK=\frac{BC}{2}\)(**)

Từ (*) và (**) => AB + CD = BC

b)

Ta có:

\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{DMC}\)

\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)

Ta có:

\(\widehat{HMC}=\widehat{DCM}\)

\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)

\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)

=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)

\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang

A B E D C M H