K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

a) Kẻ BH vg với CD.

ABHD là HCN nên AD = BH .

Theo định lí py - ta - go:

\(AD=BH=\sqrt{BC^2-CH^2}=\sqrt{13^2-\left(9-4\right)^2}=12\)

b) O ở đâu vậy

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn

Vị trí tương đối của đường thẳng và đường tròn

4 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Kẻ BE ⊥ CD

Suy ra tứ giác ABED là hình chữ nhật

Ta có: AD = BE

AB = DE = 4 (cm)

Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)

Áp dụng định lí Pitago vào tam giác vuông BCE ta có :

BC2 = BE2 + CE2

Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144

BE = 12 (cm)

Vậy: AD = 12 (cm)

b. Gọi I là trung điểm của BC

Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra : IB = IH = R

Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD

6 tháng 12 2018

ta có: góc D1 + D2 =90

mà D1 + C1 =90

=>D2=C1

xét tam giác ABD và DAC có

    BAD=ADC

    D2=C1(cmt)

=>ABD đồng dạng DAC (g-g)

=>AB/AD=AD/DC

<=>AD^2=AB.DC(1)

b) Bạn áp dung CT(1) tính AD sau đó tính DT abcd

c) Dựa vào hệ thức lượng trong tam giác vuông:

1/OA^2=1/ab^2 + 1/ad^2  =>OA=...

tính AC,BD bằng Pytago

OC= AC-OA

OD^2=OA*OC  =>OD=....

OB=BD-OD

Chúc bạn học tốt !

6 tháng 12 2018

A B C D O 1 2 1

2 tháng 8 2020

A B H I D E C 4 13

a. Kẻ \(BE\perp CD\)

Suy ra tứ giác ABED là hình chữ nhật

Ta có: AD = BE

AB = DE = 4 ( cm )

Suy ra: CE = CD – DE = 9 – 4 = 5 ( cm )

Áp dụng định lí Pitago vào tam giác vuông BCE ta có :

BC2 = BE2 + CE2

Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144

BE = 12 ( cm )

Vậy: AD = 12 ( cm )

b. Gọi I là trung điểm của BC

Ta có: \(IB=IC=\left(\frac{1}{2}\right).BC=\left(\frac{1}{2}\right).13=6,5\left(cm\right)\left(1\right)\)

Kẻ \(IH\perp AD\). Khi đó HI là đường trung bình của hình thang ABC

Ta có : \(HI=\frac{AB+CD}{2}=\frac{4+9}{2}=6,5\left(cm\right)\left(2\right)\)

Từ (1) và (2) suy ra : IB = IH = R

Vậy đường tròn \(\left(I;\frac{BC}{2}\right)\) tiếp xúc với đường thẳng AD