K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình thang cân (gt)

\( \Rightarrow AC = BD\) và \(AB\;{\rm{//}}\;CD\)

Xét \(\Delta BCD\) và \(\Delta CBE\) ta có:

\(\widehat {DCB} = \widehat {CBE}\) (do \(AB\) // \(CD\))

\(BC\) chung

\(\widehat {CBD} = \widehat {BCE}\) (do  \(CE\) // \(BD\))

Suy ra \(\Delta BCD = \Delta CBE\) (g-c-g)

Suy ra \(BD = CE\) (hai cạnh tương ứng)

Mà \(AC = BD\) (cmt)

Suy ra \(AC = EC\)

Suy ra \(\Delta CAE\) cân tại \(C\)

b) Xét \(\Delta ABD\) và \(\Delta BAC\) ta có:

\(DA = BC\) (do \(ABCD\) là hình thang cân)

\(\widehat {DAB} = \widehat {CBA}\) (Do \(ABCD\) là hình thang cân)

\(AB\) chung

Suy ra \(\Delta ABD = \Delta BAC\) (c-g-c)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) i) \(ABCD\) là hình thang cân (gt)

\( \Rightarrow \widehat A = \widehat B\) (1) và \(DC\) // \(AE\)

Vì \(AD\;{\rm{//}}\;CE\) (gt)

\(\widehat A = \widehat {CEB}\) (cặp góc đồng vị)  (2)

Từ (1) và (2) suy ra: \(\widehat {CEB} = \widehat B\)

Suy ra \(\Delta CEB\) là tam giác cân.

ii) \(\Delta CEB\) cân tại \(C\) (cmt)

Suy ra: \(CE = BC\) (3)

Xét \(\Delta ADE\) và \(\Delta CED\) ta có:

\(\widehat {{\rm{ADE}}} = \widehat {{\rm{CED}}}\) (\(AD\)// \(CE\), cặp góc so le trong)

\(DE\) chung

\(\widehat {{\rm{AED}}} = \widehat {{\rm{CDE}}}\) (\(CD\) // \(AB\), cặp góc so le trong)

Suy ra: \(\Delta ADE = \Delta CED\) (g-c-g)

Suy ra: \(AD = CE\) (4)

Từ (3) và (4) suy ra: \(AD = BC\)

b) Chứng minh tương tự như ý a) ta có: Hình thang cân \(MNPQ\) có hai cạnh bên \(MQ = NP\)

Xét tam giác \(\Delta MQP\) và \(\Delta NPQ\) ta có:

\(MQ = NP\) (cmt)

\(\widehat {{\rm{MQP}}} = \widehat {{\rm{NPQ}}}\) (do \(MNPQ\) là hình thang cân)

\(PQ\) chung

Suy ra: \(\Delta MQP = \Delta NPQ\) (c-g-c)

\( \Rightarrow MP = NQ\) (hai cạnh tương ứng)

23 tháng 6 2016

a/vì AB//DC(gt) suy ra AB//DE

và AC//BE(gt)

do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE

Mà AC=BD(gt)

suy ra BD=BE

Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)

b/Chứng minh:tg ACD=tg BDC 

VÌ tg BDE cân tại B nên ta có :GÓc B1 = GÓc E1(*)

Vì AC//BE(gt)

E=C1 là 2 góc đồng vị 

suy ra góc C1 =góc E(**)

từ (*);(**) suy ra B1=C1

bạn tự xét tg nha

suy ra tg ACD=tg BDC

c/bạn tự cm lun nha

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

19 tháng 6 2020

A B E C D 1 1

a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân

b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)

Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)

Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)

* Xét 2 tam giác : ACD và BDC có :

DC chung

AC = BD ( gt )

\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)

c) Theo ( c/m câu b ) ta có :

\(\Delta ACD=\Delta BDC\)

nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

25 tháng 7 2018

a, AB song song với CE(gt) nên góc ABC = góc ECB

AC song song với BE(gt) nên góc ACB = góc EBC

Tam giác ABC = Tam giác ECB (g.c.g) nên AC=BE (2 cạnh tương ứng)

Mà AC =BD (gt) do đó: BD =BE

 Vậy tam giác BDE cân tại B

b, Tam giác BDE cân tại B (cmt) suy ra: góc BDC =góc E (t/c)

AC song song với BE(gt) nên góc ACD = góc E (đồng vị)

Tam giác ACD = tam giác BDC (c.g.c)

c, 2 tam giác bằng nhau trên suy ra: góc ADC = góc BCD

Vậy ABCD là hình thang cân (định nghĩa)

20 tháng 9 2019

A B C D E 1 1

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó  \(\Delta BDE\) cân 

b ) Ta có : AC // BE 

\(\Rightarrow\widehat{C}_1=\widehat{E}\)      ( 3 )

Tam giác BDE cân tại B ( câu a ) nên \(\widehat{D}_1=\widehat{E}\)       ( 4 )

Từ (3 ) và ( 4 ) \(\Rightarrow\widehat{C}_1=\widehat{D}_1\)

Xét \(\Delta ACD\) và \(\Delta BCD\) có AC = CD ( gt )
\(\widehat{C}_1=\widehat{D}_1\left(cmt\right)\)

CD là cạnh chung 

Nên \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)

c ) Vì \(\Delta ACD=\Delta BCD\) ( câu b ) \(\Rightarrow\widehat{ADC}=\widehat{BCD}\)

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Chúc bạn học tốt !!!

10 tháng 10 2020

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang ABCD(AB//CD)ABCD(AB//CD) có AC=BDAC=BD. Qua BB kẻ đường thẳng song song với ACAC, cắt đường thẳng DCDC tại EE. Chứng minh rằng: 

a) BDEBDE là tam giác cân. 

b) △ACD=△BDC.△ACD=△BDC.

c) Hình thang ABCDABCD là hình thang cân.

chúc hok tốt , k nha! sai cũng k