K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

\(\left|\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MN}\right|=\left|\overrightarrow{MA}+\overrightarrow{MD}+\overrightarrow{DC}-\overrightarrow{MN}\right|\)\(=\left|\overrightarrow{DC}-\frac{1}{2}\overrightarrow{DC}-\frac{1}{2}\overrightarrow{AB}\right|=\left|\overrightarrow{DC}-\frac{3}{4}\overrightarrow{DC}\right|=\frac{1}{A}DC=\frac{a}{2}\)

Xét hình thang ADCB có

Q,P lần lượt là trung điểm của AB,DC

=>QP là đường trung bình của hình thang ADCB

=>QP//AD//BC và \(QP=\dfrac{AD+BC}{2}=\dfrac{\dfrac{BC}{2}+BC}{2}=\dfrac{3}{4}BC\)

Ta có: M là trung điểm của BC

=>\(BM=MC=\dfrac{BC}{2}\)

Ta có: N là trung điểm của MC

=>\(MN=NC=\dfrac{MC}{2}=\dfrac{BC}{4}\)

BM+MN=BN

=>\(BN=\dfrac{1}{4}BC+\dfrac{1}{2}BC=\dfrac{3}{4}BC\)

=>QP=BN

Ta có: QP//BN

QP=BN

Do đó: \(\overrightarrow{QP}=\overrightarrow{BN}\)

=>Điểm E trùng với điểm P

1 tháng 7 2017

Vì M;  N lần lượt là trung điểm của AD;  BC

M A → + M D → = 0 → B N → + C N → = 0 → .

Dựa vào đáp án, ta có nhận xét sau:

A đúng, vì :

M D → + C N → + D C → = M N → = M D → + D C → + C N → = M C → + C N → = M N → .

B đúng, vì  A B → − M D → + B N → = A B → + B N → − M D → = A N → − A M → = M N → .

C đúng, vì  M N → = M A → + A B → + B N → và   M N → = M D → + D C → + C N → .

Suy ra  

  2 M N → = M A → + M D → + A B → + D C → + B N → + C N → = 0 → + A B → + D C → + 0 → = A B → + D C →

⇒ M N → = 1 2 A D → + B C → .

D sai, vì theo phân tích ở đáp án C.

Chọn D.

13 tháng 10 2023

Xét ΔADB có 

\(cosA=\dfrac{AB^2+AD^2-DB^2}{2\cdot AB\cdot AD}\)

=>\(\dfrac{a^2+9a^2-DB^2}{2\cdot a\cdot3a}=\dfrac{1}{2}\)

=>\(10a^2-DB^2=3a^2\)

=>\(DB=a\sqrt{7}\)

Xét ΔABD có

\(cosABD=\dfrac{BA^2+BD^2-AD^2}{2\cdot BA\cdot BD}\)

\(=\dfrac{9a^2+7a^2-a^2}{2\cdot3a\cdot a\sqrt{7}}=\dfrac{15a^2}{6a^2\cdot\sqrt{7}}=\dfrac{15}{6\sqrt{7}}=\dfrac{5}{2\sqrt{7}}\)

=>\(cosCDB=\dfrac{5}{2\sqrt{7}}\)(do \(\widehat{ABD}=\widehat{CDB}\) vì AB//CD)

Xét ΔCDB có \(cosCDB=\dfrac{DB^2+DC^2-BC^2}{2\cdot DB\cdot DC}\)

=>\(\dfrac{5}{2\sqrt{7}}=\dfrac{7a^2+a^2-BC^2}{2\cdot a\sqrt{7}\cdot a}\)

=>\(\dfrac{8a^2-BC^2}{2a^2\sqrt{7}}=\dfrac{5}{2\sqrt{7}}\)

=>\(\dfrac{8a^2-BC^2}{a^2}=5\)

=>\(8a^2-BC^2=5a^2\)

=>\(BC^2=3a^2\)

=>\(BC=a\sqrt{3}\)

23 tháng 9 2018

Chọn C.

Ta có:  suy ra

Do đó

19 tháng 2 2017

Chọn C.

Do I là trung điểm của DC nên ta có:

Lại có:

suy ra

Vậy AI BD.

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O...
Đọc tiếp

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.

A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .

Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng

A. HA CD  và AD CH  .

B. HA CD  và DA HC  .

C. HA CD  và AD HC  .

D. HA CD  và AD HC  và OB OD  .

Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng

A. 1. B. 2. C. 2. D. 3.

Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm   4 , 3 . Độ dài của vectơ AB là

A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm

Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng

A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a

Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB  . Độ dài vectơ AC là

A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c

0