Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D G
mình vẽ hình xấu đừng cuòi nhé
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC= 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG=1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x2 = 69 cm2
diện tích ABCD : (34,5+69)+(34,5+69)x2 = 310,5 cm2
duyệt đi
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC = 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG => chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG= 1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x 2= 69 cm2
diện tích hình thang ABCD : (34,5+69)+(34,5+69) x2 = 310,5 cm2
duyệt đi
a) Đáy lớn hình thang là:
8 + 6 = 14 cm
b) Chiều cao AH là:
( 6 + 8 ) : 2 = 7 cm
Diện tích hình thang ABCD là:
8 x 6 = 48 cm2
c) bạn tự làm nha!
Hình thang ABCD cho ta SAID =SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 hình tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 hình tam giác CIB và CID ta có IB/ID = n/98
=> 24,5/n = n/9
n x n = 98 x 24,5 = 2401
Vậy n = 49
=> SABCD = 24,5 + 98 + 49 + 49 = 220,5 cm2
Sơ đồ minh họa:
A K B D C E F M N
Phân tích: Ta thấy tam giác \(KDC\) và tứ giác \(MNCD\) có phần chung là tứ giác \(EFCD\).
Vậy để chứng tỏ: \(S_{KEF}=S_{MED}+S_{FNC}\) ta cần chứng tỏ \(S_{KDC}=S_{MNCD}\)
Giải tóm tắt:
\(S_{KDC}=DC\times BC\div2=\frac{1}{2}\times S_{ABCD}\) (1)
Vì \(ABCD\) là hình chữ nhật nên tứ giác \(MNCD\) là hình thang và có diện tích là:
\(S_{MNCD}=\left(MD+NC\right)\times DC\div2=\)
\(=AD\times DC\div2=\frac{1}{2}\times S_{ABCD}\) (2)
Từ (1) và (2) ta có: \(S_{KDC}=S_{MNCD}\)
Tam giác \(KDC\) và hình thang \(MNCD\) có phần chung là tứ giác \(EFCD\), suy ra:
\(S_{KEF}=S_{MED}+S_{FNC}\)
O A D C B
\(S_{ABC}=S_{ABD}\) ( có chung cạnh đáy \(AB\) và chiều cao hạ từ \(C,D\) xuống cạnh \(AB\) bằng nhau vì đều là chiều cao hình thang \(ABCD\) ).
\(S_{AOD}=S_{ABD}-S_{AOB}\); \(S_{BOC}=S_{ABC}-S_{AOB}\)
Do đó \(S_{AOD}=S_{BOC}\)