K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ABED có

AB//ED(gt)

AB=ED

Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Cho mình hỏi vs ạ. Giải ra và vẽ hình dùm mk,mk cám ơn ạBài 1: Cho hbh ABCD có AD=2AB; A=60 độ. Gọi E và F lần lượt là tđ của BC và ADa) CM: AE vuông góc với BFb) CM: tứ giác BFDC là hình thang cânc) Lấy điểm M đối xứng của A qua B. CM: tg BMCD là hcnd) CM: M,E,D thẳng hàngBài 2: Cho tam giác ABC vuông tại A có BAC = 60 độ.kẻ tia Ax song song vs BC.Trên Ax lấy điểm D sao cho AD=DCa) Tính các góc BAC và DACb) CM: tứ...
Đọc tiếp

Cho mình hỏi vs ạ. Giải ra và vẽ hình dùm mk,mk cám ơn ạ

Bài 1: Cho hbh ABCD có AD=2AB; A=60 độ. Gọi E và F lần lượt là tđ của BC và AD

a) CM: AE vuông góc với BF

b) CM: tứ giác BFDC là hình thang cân

c) Lấy điểm M đối xứng của A qua B. CM: tg BMCD là hcn

d) CM: M,E,D thẳng hàng

Bài 2: Cho tam giác ABC vuông tại A có BAC = 60 độ.kẻ tia Ax song song vs BC.Trên Ax lấy điểm D sao cho AD=DC

a) Tính các góc BAC và DAC

b) CM: tứ giác ABCD là hình thang cân

c) Gọi E là tđ của BC.CM: tứ giác ADEB là hình thoi

d) cho AC=8cm,AB=5cm.Tính diện tích hình thoi

Bài 3: Cho hbh ABCD có AB=2AD.Gọi E,F theo thứ tự là tđ của AB và CD

a) các tứ giác AEFD,AECF là hình gì? Vì sao?

b) Gọi M là gđ của AF và DE,gọi N là gđ của BF và CE.CMR: tứ giác EFMN là hcn

c) HBH ABCD nếu có thêm điều kiện gì thì EFMN là hình vuông?

 

1

Bài 3: 

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

b: Xét tứ giác BEFC có 

BE//CF

BE=CF

Do đó: BEFC là hình bình hành

mà BE=BC

nên BEFC là hình thoi

Xét ΔEDC có 

EF là đường trung tuyến

EF=DC/2

Do đó: ΔEDC vuông tại E

Xét tứ giác EMFN có

\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)

Do đó: EMFN là hình chữ nhật

c: Để EMFN là hình chữ nhật thì EM=FN

=>ED=AF

=>AEFD là hình vuông

=>\(\widehat{BAD}=90^0\)

a: Xét tứ giác ABED có

góc BAD=góc ADE=góc BED=90 độ

nên ABED là hình chữ nhật

b: Xét tứ giác BMCD có

BM//CD
BM=CD
Do đo; BMCD là hình bình hành

c:

Gọi O là trung điểm của AE

góc AIE=90 độ

mà IO là trung tuyến

nên IO=AE/2=BD/2

Xét ΔIBD có

IO là trung tuyến

IO=BD/2

Do đó: ΔIBD vuông tại I

13 tháng 10 2016

a)Xét hình bình hành ABED có:

   AB=DE

   AB//DE(doAB//DC)

   =>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)

 b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )

    Xét tam giác ANI và tam giác EMI có:

    AI=IE(là trung điểm AI)

    góc BAE=gócAED(cmt)

    góc AIN=gócEIM(2 góc đối đỉnh)

    =>tam giác ANI=tam giác EIM(g.c.g)

    =>AN=ME(2 cạnh tương ứng)

    có AB=DE

        AN=ME

      =>AB-AN=DE-ME

      =>NB=DM

      mà DM=MC(do M là trung điểm DC)

      =>NB=MC

      Lại có NB//MC (do AB//DC)

     Xét tứ giác NBMC có :

     NB=MC(cmt)

     NB//MC(cmt)

     =>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)

     =>NM=BC

c)

13 tháng 10 2016
  1. a , Vì E ​\(\in\)CD =) DE // AB . 
    . Xét tứ giác ABED có DE// AB ; AB=DE =) ABED là hình bình hành
    . - 


    .
13 tháng 7 2018

Hỏi đáp Toán

Hỏi đáp Toán

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E