Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Bài 3:
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
b: Xét tứ giác BEFC có
BE//CF
BE=CF
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình chữ nhật thì EM=FN
=>ED=AF
=>AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
a: Xét tứ giác ABED có
góc BAD=góc ADE=góc BED=90 độ
nên ABED là hình chữ nhật
b: Xét tứ giác BMCD có
BM//CD
BM=CD
Do đo; BMCD là hình bình hành
c:
Gọi O là trung điểm của AE
góc AIE=90 độ
mà IO là trung tuyến
nên IO=AE/2=BD/2
Xét ΔIBD có
IO là trung tuyến
IO=BD/2
Do đó: ΔIBD vuông tại I
a)Xét hình bình hành ABED có:
AB=DE
AB//DE(doAB//DC)
=>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)
b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )
Xét tam giác ANI và tam giác EMI có:
AI=IE(là trung điểm AI)
góc BAE=gócAED(cmt)
góc AIN=gócEIM(2 góc đối đỉnh)
=>tam giác ANI=tam giác EIM(g.c.g)
=>AN=ME(2 cạnh tương ứng)
có AB=DE
AN=ME
=>AB-AN=DE-ME
=>NB=DM
mà DM=MC(do M là trung điểm DC)
=>NB=MC
Lại có NB//MC (do AB//DC)
Xét tứ giác NBMC có :
NB=MC(cmt)
NB//MC(cmt)
=>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)
=>NM=BC
c)
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E