Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K 2 5
Kẻ AH và BK vuông góc với CD ta có:
AH//BK mà AB//HK nên ABKH là hình bình hành
Ta có góc H = góc K = 90 độ suy ra hình bình hành ABKH là hình chữ nhật
Suy ra HK=AB=2 (cm) nên DH+CK=CD-HK=5-2=3 (cm)
Xét tam giác AHD và tam giác BKC ta có:
góc H = góc K =90 độ
góc D = góc C (ABCD là hình thang cân)
AD=BC (ABCD là hình thang cân)
Do đó tam giác AHD = tam giác BKC ( cạnh huyền - góc nhọn)
Suy ra DH=CK (2 cạnh tương ứng)
Suy ra DK= 3/2=1.5
Ta lại có góc DAH + góc HAB = góc A
nên góc DAH = góc A - góc HAB = 127-90= 37 độ
tan góc DAH = \(\frac{DH}{AH}\) suy ra AH= \(\frac{DH}{\tan DAH}\)
=\(\frac{1,5}{\tan37}\approx2\left(cm\right)\)
SABCD = \(\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(2+5\right)\cdot2}{2}=7\left(cm^2\right)\)
A B C D 2cm 60cm H E 6cm F E H
Mik ghi ý th, bạn tự giải chi tiết nha
a)Vẽ BE//AD,BH vuông góc CD.
CM đc ABED là hình bình hành => DE=2,EC=4
Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2
=>AD=BE=2
b)
Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1
Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.
từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD
dễ chứng minh tứ giác ABFE là hình chữ nhật
=>EF=AB=12cm
do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)
\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)
\(=\dfrac{1}{2}\left(18-12\right)=3cm\)
xét trong tam giác BFC vuông tại F
\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)
pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)
\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số
Kẻ `AH, CK` vuông góc `CD`.
Xét `\DeltaADH` và `\DeltaBCK` có:
`AH =CK`
`\hatD=\hatC`
`AD=BC`
`=> \DeltaADH=\DeltaBCK`
`=> DH=CK=x`
Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)
`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`
`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`