Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :
Ta có : MHK = NKH = 90 độ
=> MH // NK
=> Tứ giác MNKH là hình thang
Mà MHK = NKH = 90 độ
=> Tứ giác MNKH là hình thang cân
=> HMN = MNK = 90 độ
=> MNK = NKH = 90 độ
=> MN // HK
=> MN// QP
=> MNPQ là hình thang
Mà QMN = MNP (gt)
=> MNPQ là hình thang cân(dpcm)
Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé
A B C D M I 1 2 1 2 1 2
Gọi M là giao điểm DI và AB
Ta có: AM//DC
=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1)
Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)
=> \(\widehat{M}=\widehat{D_1}\)
=> Tam giác ADM cân
=> ID=IM (2)
Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)
Từ (1) , (2) => Tam giác IBM = tam giác ICD
=> BM=DC
Do vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)
ta co M1=D1 ( 2 goc so le trong va AB song song CD )
D1=D2 ( DM la tia p/g goc D )
--> M1=D2 ---> tamgiac MAD cân tại A
cmtt tam giac MBC can tai B
ta co AB = AM + MB( M thuoc AB)
AM=AD ( tam giac AMD can tai A)
MB = BC ( tam giac MBC can tai B)
====> AB= AD+BC
A B C D 1 2 1 2 M A B 1 2
Ta có: \(\widehat{KAB}=\widehat{KAD}\)(AK là phân giác của góc BAD)
\(\widehat{BAK}=\widehat{DKA}\)(hai góc so le trong, AB//DK)
Do đó: \(\widehat{DAK}=\widehat{DKA}\)
=>DA=DK
Ta có: \(\widehat{ABK}=\widehat{CBK}\)(BK là phân giác của góc ABC)
\(\widehat{ABK}=\widehat{CKB}\)(hai góc so le trong, AB//CK)
Do đó: \(\widehat{CBK}=\widehat{CKB}\)
=>CK=CB
Ta có: AD+CB
=DK+KC
=DC
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath. Em tham khảo link này nhé!
A B C D I K
Gọi K là điểm thuộc AD sao cho IK // AB // CD
Ta có : IK // AB => Góc BAI = góc IAK = góc AIK
=> Tam giác KAI cân tại K => AK = KI
Tương tự, ta cũng có tam giác DKI cân tại K => IK = AD
=> K là trung điểm AD => IK là đường trung bình của hình thang ABCD
Do đó : AD = 2KI = \(2.\frac{AB+CD}{2}=AB+CD\)
- Ân :'>