Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C M K H F E
xét tg AMCH có: E là t/đ của của MH và AC => tg AMCH là hbh=> AM//HC
xét tg BMDK có: F là t/đ của MK và BD => tg BMDK là hbh => BM//DK
Mà M thuộc AB (gt) => AB // HC//DK. (1)
Mặt khác : AB // DC (2)
Từ (1),(2)=> D,K,H,C thẳng hàng (tiên đề Ơ -clit)
b) do tg AMCH là hbh (c/m câu a)=> AM=CH (3)
Do tg BMDK là hbh (.................)=> BM=DK (4)
Từ(3),(4)=> AM+BM=CH+DK
=> AB=CH+DK (5)
Mặt khác: Dk+KH+HC=DC=> KH=DC-(DK+HC) (6)
Từ (5),(6),=> HK=DC-AB
Mà hthang ABCD cố định nên AB và DC ko đổi => DC-AB ko đổi => HK ko đổi
Vậy khi M di chuyển trên AB thì độ dài HK ko đổi
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy H đối xứng với E qua M; K đối xứng với F qua M. Tính HK
Xét tứ giác MBKD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên MBKD là hình bình hành.
Vậy nên DK // MB hay DK // AB.
Lại có DC // AB nên D, K, C thẳng hàng.
Tương tự : C, H, D thẳng hàng.
Từ đó suy ra D, C, H, K thẳng hàng.
a: Xét tứ giác AMCH có
E là trung điểm chung của AC và MH
nên AMCH là hình bình hành
Suy ra: AM//CH và AM=CH
=>C,H,D thẳng hàng
Xét tứ giác BMDK có
F là trung điểm chung của BD và MK
nên BMDK là hình bình hành
Suy ra: BM//DK
=>D,K,C thẳng hàng
=>D,K,C,H thẳng hàng
b: Vì F,E lần lượt la trung điểm của BD,AC
nên FE=(CD-AB)/2
=>KH=CD-AB
=>KH ko đổi khi M di động trên AB