K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

a) Dễ nên bạn tự làm nha!

b) Gọi M là trung điểm\(BC\Rightarrow BM=CM\)
Xét \(\Delta ABC\) có:
\(BM=CM \)
\(AE=EC\) (E là trung điểm của AC)
\(\Rightarrow EM\) là đường trung bình trong \(\Delta ABC\)
\(\Rightarrow\) EM//AB và \(EM=\dfrac{AB}{2}\)
Tương tự: Xét \(\Delta BCD\) có:
FM là đường trung bình trong \(\Delta BCD\)
\(\Rightarrow\) FM//CD và \(FM=\dfrac{CD}{2}\)
Ta lại có:
FM//CD
mà AB//CD (ABCD là hình thang)
\(\Rightarrow\) FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy \(EF=FM-EM=\dfrac{CD-AB}{2}\)(đpcm)

20 tháng 9 2019

A B C D E F P

*Chứng minh EF // AB // CD

Gọi P là trung điểm AD có ngay:PF // AB (2) (PF là đường trung bình tam giác DAB)

Lại có PE // DC(là đường trung bình tam giác ADC) và DC // AB nên PE // AB(2)

Từ (1) và (2) theo tiên đề Ơclit suy ra P, E, F thẳng hàng. Mà PF // AB -> FE // AB(3)

Lại có PE // DC -> FE // DC (4). Từ (3) và (4)  suy ra đpcm.

* Chứng minh EF = \(\frac{CD-AB}{2}=\frac{CD}{2}-\frac{AB}{2}\)

Do PE = 1/2 CD; PF = 1/2 AB và P, E, F thẳng hàng nên:

\(PF+FE=PE\Leftrightarrow\frac{1}{2}AB+FE=\frac{1}{2}CD\Leftrightarrow FE=\frac{CD-AB}{2}\)

=> đpcm

P/s: ko chắc.

20 tháng 9 2019

Sửa tí: 

"Có ngay PF // AB (1)"

15 tháng 9 2017

tôi chưa hok đến lp 8

30 tháng 7 2019

Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

Gọi M,N lần lượt là trung điểm của AD,BC

Xét hình thang ABCD có

M,N lần lượt là trung điểm của AD,BC

=>MN là đường trung bình

=>MN//AB//CD và MN=(AB+CD)/2

Xét ΔDAB có

M,E lần lượt là trung điểm của DA,DB

=>ME là đường trung bình

=>ME//AB và ME=AB/2

Xét ΔCBA có

F,N lần lượt là trung điểm của CA,CB 

=>FN là đường trung bình

=>FN//AB và FN=AB/2

ME//AB

MN//AB

ME cắt MN tại M

Do đó: M,E,N thẳng hàng

NF//AB

NM//AB

NM cắt NF tại N

Do đó: N,F,M thẳng hàng

=>M,E,F,N thẳng hàng

=>ME+EF+FN=MN

=>\(EF=\dfrac{1}{2}\left(CD+AB\right)-\dfrac{1}{2}AB-\dfrac{1}{2}AB=\dfrac{1}{2}\left(CD-AB\right)\)

20 tháng 4 2020

có m là trđ của cd rồi lại còn ef cắt bc tại m

a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)

xét tam giác MFC có  MC // AB (gt) => MF/FB = CM/AB (đl)

có DM = CM do M là trung điểm của CD (gt)

=> ME/AE = MF/FB  xét tam giác ABM 

=> EF // AB (đl)

b, gọi EF cắt AD;BC lần lượt tại P và Q

xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)

xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)

xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)

=> PE/AB = EF/AB

=> PE = EF

tương tự cm được FQ = EF

=> PE = EF = FQ

c, Xét tam giác DAB có PE // AB  => PE/AB = DP/DA (đl)

xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl) 

=> PE/AB + PE/DM = DP/AD + AP/AD

=> PE(1/AB + 1/DM) = 1                                  (1)

xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)

xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)

=> EF/AB + EF/DM = MF/MB + BF/BM

=> EF(1/AB + 1/DM) = 1                            (2)

xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)

xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)

=> FQ/AB + FQ/MC = CQ/BC + BQ/BC 

có MC = DM (câu a)

=> FQ(1/AB + 1/DM) = 1                            (3)

(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3

=> PQ(1/AB + 1/DM) = 3

DM = 1/2 CD = 6

đến đây thay vào là ok

17 tháng 9 2016

Áp dụng định lý 2 của đường trung bình trong hình thang

Có AB//CD => ABCD là hình thang. EF là đường trung bình của hình thang

Nên \(\text{EF}=\frac{CD+AB}{2}\) .

18 tháng 9 2016

Sai rồi vì EF đâu phải đường trung bình đâu, E là trung điểm BD, F là trung điểm AC và đề bài yêu cầu chứng minh EF=(CD-AB)/2 mà.