K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

DD
22 tháng 6 2021

Dựng hình bình hành \(ABEC\).

Khi đó \(E\in DC\).

Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).

Kẻ \(BH\perp DE\)

Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\)

\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)

Có ai biết đổi tên cho mình hông?

NV
5 tháng 7 2021

Kẻ đường cao BE \(\Rightarrow BE=12\)

Pitago tam giác vuông BDE:

\(DE=\sqrt{BD^2-BE^2}=9\left(cm\right)\)

Qua B kẻ đường thẳng song song AC cắt CD kéo dài tại P

Do \(AC\perp BD\Rightarrow BP\perp BD\) hay tam giác BPD vuông tại B

Mặt khác \(\left\{{}\begin{matrix}AB||CD\\AC||BP\end{matrix}\right.\) \(\Rightarrow ABPC\) là hbh

\(\Rightarrow AB=CP\Rightarrow AB+CD=CP+CD=DP\)

Hệ thức lượng tam giác vuông BPD:

\(BD^2=DE.DP\Rightarrow DP=\dfrac{BD^2}{DE}=25\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}BE.\left(AB+CD\right)=\dfrac{1}{2}BE.DP=\dfrac{1}{2}.9.25=112,5\left(cm^2\right)\)

NV
5 tháng 7 2021

undefined

21 tháng 6 2016

chỉ cần kẻ đường thẳng // với AC cắt DC tại H rùi áp dụng hệ thức lượng vs py-ta-go là ra 

21 tháng 6 2016

A B C D H K

Theo cách của phan tuấn anh thì hình đây bạn, bạn tự làm nốt