K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Phép đối xứng qua đường thẳng ***** biến tam giác AEO thành tam giác BFO, phép vị tự tâm B, tỉ số 2 biến tam giác BFO thành tam giác BCD. Do đó ảnh của tam giác AEO qua phép đồng dạng đã cho là tam giác BCD.

31 tháng 3 2017

Phép đối xứng qua đường thẳng biến tam giác AEO thành tam giác BFO, phép vị tự tâm B, tỉ số 2 biến tam giác BFO thành tam giác BCD. Do đó ảnh của tam giác AEO qua phép đồng dạng đã cho là tam giác BCD.

13 tháng 9 2019

Giải bài 5 trang 35 sgk Hình học 11 | Để học tốt Toán 11

+ Lấy đối xứng qua đường thẳng IJ.

IJ là đường trung trực của AB và EF

⇒ ĐIJ(A) = B; ĐIJ (E) = F

O ∈ IJ ⇒ ĐIJ (O) = O

⇒ ĐIJ (ΔAEO) = ΔBFO

+ ΔBFO qua phép vị tự tâm B tỉ số 2

Giải bài 5 trang 35 sgk Hình học 11 | Để học tốt Toán 11

Vậy ảnh của ΔAEO qua phép đồng dạng theo đề bài là ΔBCD.

Số phát biểu sai:a) Phép đối xứng trục là một phép dời hìnhb) Đường thẳng d được gọi là trục đối xứng của hình (H) nếu phép đối xứng trục Đd biến hình (H) thành chính nó.c) Một hình có thể có một hay nhiều trục đối xứng, có thể không có trục đối xứng.d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó.e) Qua phép đối xứng trục Đa, đường...
Đọc tiếp

Số phát biểu sai:

a) Phép đối xứng trục là một phép dời hình

b) Đường thẳng d được gọi là trục đối xứng của hình (H) nếu phép đối xứng trục Đd biến hình (H) thành chính nó.

c) Một hình có thể có một hay nhiều trục đối xứng, có thể không có trục đối xứng.

d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó.

e) Qua phép đối xứng trục Đa, đường tròn có tâm nằm trên a sẽ biến thành chính nó.

f) Qua phép đối xứng trục Đa, tam giác có một đỉnh nằm trên a sẽ biến thành chính nó

g) Qua phép đối xứng trục Đa, ảnh của đường thẳng vuông góc với a là chính nó

h) Nều phép đối xứng trục biến đường thẳng a thành đường thẳng b cắt a thì giao điểm của a và b nằm trên trục đối xứng

i) Hình chữ nhật có 4 trục đối xứng

A. 3

B.5 

C. 7 

D.9

1
2 tháng 7 2019

Đáp án A

Nhữngphát biểu sai:  d; f; i

d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó hoặc là chính nó.

f) Qua phép đối xứng trục Đa, tam giác có một đỉnh nằm trên a sẽ biến thành chính nó ( chỉ trong trường hợp tam giác đều hoặc tam giác cân cóđỉnh nằm trên trục đối xứng)

i) Hình chữ nhật có 2 trục đối xứng

29 tháng 1 2017

Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ (d’): 3x + y – 6 = 0.

b. ĐOy (A) = A1 (1 ; 2)

Lấy B(0 ; -1) ∈ d

Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).

⇒ d1 = ĐOy (d) chính là đường thẳng A1B.

⇒ d1: 3x – y – 1 = 0.

c. Phép đối xứng tâm O biến A thành A2(1; -2).

d2 là ảnh của d qua phép đối xứng tâm O

⇒ d2 // d và d2 đi qua A2(1 ; -2)

⇒ (d2): 3x + y – 1 = 0.

d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.

Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).

Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)

Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’

Do đó phương trình d’ là :

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

9 tháng 11 2017

Giải bài 4 trang 34 sgk Hình học 11 | Để học tốt Toán 11

Lấy điểm A bất kì.

Gọi B = Đd (A) ; C = Đd’(B).

Gọi H, K là giao điểm của AB với d và d’ như hình vẽ.

Ta có:

Giải bài 4 trang 34 sgk Hình học 11 | Để học tốt Toán 11

Mà d’ là ảnh của d qua phép tịnh tiến theo vectơ Giải bài 4 trang 34 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ C là ảnh của A qua phép tịnh tiến theo vec tơ v

21 tháng 6 2017

a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).

Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ  v   → =   ( 2 ; 0 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo  v   → =   ( 2 ; 0 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

P(3;1) đối xứng qua trục Oy ta được M"(-3;1)

6 tháng 11 2018

Giải bài 1 trang 34 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 1 trang 34 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

30 tháng 5 2017

a)
Qua phép đối xứng trục Oy điểm \(M\left(1;1\right)\) biến thành điểm \(M'\left(x;y\right)\) có tọa độ là: \(\left\{{}\begin{matrix}x'=-x=-1\\y'=y=1\end{matrix}\right.\).
Suy ra: \(M'\left(-1;1\right)\).
Qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\left(2;0\right)\) điểm M' biến thành điểm \(A\left(x_A;y_A\right)\) là:\(\left\{{}\begin{matrix}x_A=-1+2=1\\y_A=0+1=1\end{matrix}\right.\).
Suy ra: \(A\left(1;1\right)\equiv M\) là điểm cần tìm.
b) Gọi C là ảnh của điểm M qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\)
là: \(\left\{{}\begin{matrix}x_C=2+1=3\\y_C=0+1=1\end{matrix}\right.\). Suy ra: \(C\left(3;1\right)\)
\(M''=Đ_{Oy}\left(C\right)\) nên \(\left\{{}\begin{matrix}x_{M''}=-x_C=-3\\y_{M''}=y_C=1\end{matrix}\right.\). Suy ra: \(M''\left(-3;1\right)\).