Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H M N P K
a) Ta có:AB = CD (gt) \(\Rightarrow\)\(\frac{AB}{2}=\frac{CD}{2}\)
Mà \(\frac{AB}{2}=BM\)(vì M là trung điểm của AB)
và \(\frac{CD}{2}=CP\)(vì P là trung điểm của CD)
\(\Rightarrow\)BM = CP (1)
Ta lại có: \(M\in AB\)và \(P\in CD\)
\(\Rightarrow MP=BC\)(2)
Từ (1) và (2), suy ra: MBCP là hình chữ nhật (đpcm)
b) Gọi K là trung điểm của BH \(\Rightarrow\)NK đường trung bình của \(\Delta ABH\)
Ta có NK//AB và NK = \(\frac{1}{2}AB\)
Mà CP//AB và CP =\(\frac{1}{2}CD=\frac{1}{2}AB\Rightarrow NK=CP\)
\(\Rightarrow\)NKCP là hình bình hành
\(\Rightarrow\)NK//CP (1)
Vì NK//AB , AB\(\perp\)BC nên NK\(\perp\)BC
Suy ra K là trực tâm \(\Delta BCM\); \(CK\perp BN\)(2)
Từ (1) và (2), suy ra: BN vưông góc NP (đpcm)
A B C D N M
a) Ta có :
AB // CD ( Vì ABCD là hcn )
mà N \(\in\) AB
M \(\in\) DC
=) AN // MD
Xét hcn ABCD có :
M là tđ của cạnh DC
NA // MD
=) N là tđ của AB
=) NA = NB
mà AM = MC
lại có : AB = DC ( vì ABCD là hcn )
=) AN = DM
mà AN // DM
=) ANMD là hbh
mà góc M = 90o
=) ANMD là hcn
b)
Ta có : AN = MC ( Vì cx = MD )
mà AN // DC
=) ANCM là hbh
câu c) chút nữa mình làm bn vẽ hình trước
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ