K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

áp dụng hệ thức lượng trong tam giác vuông vào tam giác ABC vuông tại B, ta có:\(\left\{{}\begin{matrix}AB=cos\left(30\right).50=25\sqrt{3}\\BC=sin\left(30\right).50=25\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=\left(25+25\sqrt{3}\right).2\approx136,6\left(cm\right)\\S=25.25\sqrt{3}\approx1082,53\left(cm^2\right)\end{matrix}\right.\)

24 tháng 8 2017

bạn gửi cho mình câu trả lời dc ko? cảm ơn

16 tháng 11 2018

a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)

  Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)

 Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.

b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung

                                                            EHB=CHB=90 (gt)

                                                            EH=EC(H là trung điểm của EC)

     Vậy tam giác EBH=tam giac CBH (cgv-cgv)

          =>BEH=BCH ; EBH=CBH

Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)

Co BCE+ECG=BCG

Ma BCG=90(ABCD là hcn); BCE=45(cmt)

    => ECG=45

Xét tam giác EGC có:EGC+GEC+ECG=180

                          => EGC=180-(GEC+ECG)

                                     =180-(90+45)=45 (4)

Tu (3)$(4) => BEG=90

c)Tu CM

1: Xét ΔHAB có 

E là trung điểm của HA

F là trung điểm của HB

Do đó: EF là đường trung bình

=>EF//AB và EF=AB/2

hay EF//CD và EF=CD/2

mà G là trung điểm của CD

nên EF=CG và EF//CG

=>EFCG là hình bình hành

5 tháng 7 2016

bài này dễ lắm

5 tháng 7 2016

Đường phân giác góc B cắt đường chéo AC tại M. Giả sử AM = \(\frac{30}{7}\left(m\right)\)thì CM = \(\frac{40}{7}\left(m\right)\)và AC = 10 (m)

Từ M dựng MI vuông góc với AB (I thuộc AB) => MI song song BC (vì cùng vuông với AB), theo Talet thì:

\(\frac{BI}{AB}=\frac{MC}{AC}=\frac{\frac{40}{7}}{10}=\frac{4}{7}\Rightarrow BI=\frac{4}{7}AB\)

Từ M dựng MK vuông góc với BC (K thuộc BC), tương tự ta có: \(BK=\frac{3}{7}BC\)

Mà tứ giác BIMK là hình vuông ( vì có 3 góc vuông B,I,K và đường chéo BH chia đôi góc B)

Nên BI = BK. Do đó: \(\frac{4}{7}AB=\frac{3}{7}BC\Rightarrow\frac{AB}{3}=\frac{BC}{4}=p\)(Đặt = p)

Tam giác BAC vuông tại B có AB = 3p; BC = 4p; theo Pitago thì đường chéo AC = 5p = 10(m) => p = 2(m)

=> AB = 3*2 = 6(m) và BC = 4*2 = 8(m)

Vậy, kích thước hình chữ nhật là 6m x 8 m.

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

Gọi chiều dài và chiều rộng hình chữ nhật lần lượt là $a$ và $b$ (m)

Độ dài đường chéo: $17=\sqrt{a^2+b^2}$ (theo định lý Pitago)

$\Leftrightarrow a^2+b^2=289(1)$

Diện tích hình chữ nhật: $ab=120$

Ta đi giải hpt \(\left\{\begin{matrix} a^2+b^2=289\\ ab=120\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a+b)^2-2ab=289\\ ab=120\end{matrix}\right.\)

$\Rightarrow (a+b)^2=289+2ab=289+2.120=529$

$\Rightarrow a+b=23$

Chu vi hình chữ nhật: $2(a+b)=46$ (m)