K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó:ΔAHB\(\sim\)ΔBCD

2: Ta có: ΔAHB\(\sim\)ΔBCD

nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)

hay BC/CD=AH/HB

mà BC/CD=EB/ED

nên EB/ED=AH/HB

hay \(EB\cdot HB=AH\cdot ED\)

5 tháng 3 2023

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

góc ABH = góc BDC(hai góc so le trong, AB//DC)

góc BCD = góc AHB(hai góc vuông)

Do đó: ΔAHBΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB∼∼ΔBCD(cmt)

nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)

hay AH⋅ED=HB⋅EB(đpcm)

 

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD
b: ED/EB=AD/AB

mà AD/AB=HB/AH

nên ED/EB=HB/AH

=>ED*AH=EB*HB

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc ADB chung

=>ΔHAD đồng dạng với ΔABD

b: ΔHAD đồng dạng vơi ΔABD

=>DH/DA=DA/DB

=>DA^2=DH*DB

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

5 tháng 4 2015

a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)

Xét tam giác AHB và tam giác BCD có

      góc AHB = góc BCD =90 ĐỘ

     góc ABD = BDC ( cmtrên)

Suy ra .............( g.g)

Vì ABCD là hcn nên AB =DC =20

                              BC=AD=15

Theo định lí Pitago trong tam giác BCD

   \(BD^2=BC^2+DC^2\)

\(BD^2=20^2+15^2\)

\(BD^2=625\)

BD = 25

Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)

NÊN \(AH=\frac{AB\cdot BC}{BD}\)

 \(AH=\frac{20\cdot15}{25}\)

AH=12

c, d tự trả lời

e hình như dựa một chút vào tình chất đường phân giác trong tam giác