K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

hình bn tự vẽ nhé

a, xét tam giác AHB và tam giác ABC có:

                       góc AHB = góc ABC = 90 độ

                       góc ABH = góc BAC (ABCD là hình vuông)

nên tg AHB đồng dag vs tg ABC (g.g)

b, xét tg AHD và tg BAD có:

                      góc AHD = góc BAD = 90 độ

                      ADB là góc chung

nên tg AHD đồng dạng vs tg BAD. Do đó: AD/DB = DH/AD    => AD^2 = DH.DB (dpcm)

c, tg ABD vuông tại A có: BD^2 = AB^2 + AD^2    => DB^2 = 4^2 + 3^2 = 25          => DB = 5 (cm)

Theo câu b ta có: AD^2 = DH,DB  => DH = AD^2/DB   =>DH = 3^2/5 = 1,8 (cm)

tg AHD vuông tại H có: AD^2 = AH^2 + DH^2

=> 3^2 = AH^2 + 1,8^2 => AH^2 = 5,76    => AH = căn 2 của 5,76

16 tháng 2 2021

100 nha

8 tháng 3 2022

a. Xét tam giác AHB và tam giác BCD, có:

\(\widehat{AHB}=\widehat{BCD}=90^0\)

\(\widehat{ABH}=\widehat{CDB}\)  ( cùng phụ với \(\widehat{B}\) )

Vậy tam giác AHB đồng dạng tam giác BCD ( g.g )

b.Xét tam giác AHD và tam giác ABD, có:

\(\widehat{AHD}=\widehat{BAD}=90^0\)

\(\widehat{D}:chung\)

Vậy tam giác AHD đồng dạng tam giác ABD ( g.g )

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\)

\(\Leftrightarrow AD^2=BD.DH\)

c. Áp dụng định lý pitago vào tam giác vuông ABD, có:

\(BD^2=AD^2+AB^2\)

\(\Rightarrow BD=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Ta có:\(AD^2=BD.DH\) ( cmt )

\(\Leftrightarrow3^2=5DH\)

\(\Leftrightarrow9=5DH\)

\(\Rightarrow DH=1,8cm\)

Áp dụng dịnh lý pitago vào tam giác vuông AHD, có:

\(AD^2=AH^2+DH^2\)

\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{3^2-1,8^2}=\sqrt{5,76}=2,4cm\)

 

 

 

 

 

8 tháng 3 2022

a, Xét tam giác AHB và tam giác BCD có 

^AHB = ^BCD = 900

^ABH = ^BDC ( soletrong )

Vậy tam giác AHB ~ tam giác BCD (g.g) 

b, Xét tam giác AHD và yam giác BAD có 

^AHD = ^BAD = 900

^D _ chung 

Vậy tam giác AHD ~ tam giác BAD (g.g) 

\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\Rightarrow AD^2=HD.BD\)

c, Theo định lí Pytago tam giác DAB vuông tại A

\(BD=\sqrt{AB^2+AD^2}=5cm\)

Lại có \(\dfrac{AH}{AB}=\dfrac{AD}{BD}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}cm\)

\(HD=\dfrac{AD^2}{BD}=\dfrac{9}{5}cm\)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

4 tháng 5 2017

Vào câu hỏi tương tự kiếm thử đii

4 tháng 5 2017

ko giống khác tý bạn ơi

18 tháng 3 2021

A B C D 4 3 H

a, Xét tam giác AHB và tam giác BCD ta có : 

^AHB = ^BCD = 900

AB = CD = 4 cm 

^BDC = ^ABH ( so le trong )

Vậy tam giác AHB ~ tam giác BCD ( c.g.c )

b, Xét tam giác ADB và tam giác HAD 

^A = ^H = 900

^D _ chung 

Vậy tam giác ADB ~ tam giác HAD ( g.g )

\(\Rightarrow\frac{AD}{AH}=\frac{BD}{AD}\)( tỉ số đồng dạng ) \(\Rightarrow AD^2=BD.DH\)

c, Py ta go cho tam giác BAD ta có : 

\(BD^2=AD^2+AB^2=9+16=25\Leftrightarrow BD=5\)cm 

Lại có : \(AD^2=BD.DH\)hay \(9=5.DH\Rightarrow DH=\frac{9}{5}=1,8\)cm

\(\Rightarrow BH=BD-HD=5-1,8=3,2\)cm 

Py ta go cho tam giác \(AB^2=BH^2+AH^2\Leftrightarrow16=3,2^2+AH^2\)

\(\Leftrightarrow AH^2=\sqrt{5,76}\Leftrightarrow AH=...\)tự tính 

a: Xét ΔABD vuông tại A có 

\(BD^2=AB^2+AD^2\)

nên BD=10(cm)

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA