K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 2 2022
a: Xét tứ giác ACBD có
M là trung điểm của AB
M là trung điểm của CD
Do đó: ACBD là hình bình hành
b: Xét ΔABC có
N là trung điểm của BC
P là trung điểm của AC
Do đó: NP là đường trung bình
=>NP=AB/2 và NP//AB
Xét tứ giác ABNQ có
NQ//AB
AQ//BN
Do đó: ABNQ là hình bình hành
Suy ra: NQ=AB
=>NQ=2NP
=>P là trung điểm của NQ
Xét tứ giác ANCQ có
P là trung điểm của AC
P là trung điểm của NQ
Do đó: ANCQ là hình bình hành
mà NA=NC
nên ANCQ là hình thoi
28 tháng 8 2017
EF giao nhau BC=P
Vì PC và FN cùng vuông góc với DC nên PC song song với FN
\(\Rightarrow\)∠EMP=∠ENF
Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật
\(\Rightarrow\)∠CMN=∠MNF
\(\Rightarrow\)∠EMP=∠MNF
Tới đây thôi nha
BCFDEAabI
Đặt AB=a, BC=b
a) BE=BC=b
Tam giác BEF=BCF ( tự chứng minh)(1)
=> \(\widehat{BEF}=90^o\)
Xét tam giác AEB vuông tại A
Áp dung định lí Pitago ta có: AE=\(\sqrt{BE^2-AB^2}=\sqrt{b^2-a^2}\)
Tam giác IAE đồng dạng tam giác EAB ( tự chứng minh)
=> \(\frac{IA}{EA}=\frac{EA}{AB}\Rightarrow IA=\frac{EA^2}{AB}=\frac{b^2-a^2}{a}\)
=> \(IB=IA+AB=\frac{b^2-a^2}{a}+a=\frac{b^2}{a}\)
Xét tam giác IBE vuông tại E
=> \(IE=\sqrt{IB^2-BE^2}=\sqrt{\frac{b^4}{a^2}-b^2}=\frac{b\sqrt{b^2-a^2}}{a}\)
DF//BI => \(\frac{DE}{EF}=\frac{AE}{IE}=\frac{DE+AE}{EF+IE}=\frac{AD}{IF}\Rightarrow IF=\frac{AD.IE}{AE}=\frac{b.\frac{b.\sqrt{b^2-a^2}}{a}}{\sqrt{b^2-a^2}}=\frac{b^2}{a}\)
b) Có:
\(\frac{DC}{BC}=\frac{a}{b}\)
\(\frac{BC}{BI}=\frac{\frac{b^2}{a}}{b}=\frac{b}{a}\)
=> \(\frac{DC}{BC}=\frac{BC}{BI};\widehat{IBC}=\widehat{BCD}\left(=90^o\right)\)
=> tam giác BCD đồng dạng IBC
=> \(\widehat{BIC}=\widehat{CBD}\)
mà \(\widehat{BIC}+\widehat{BCI}=90^o\)
=> \(\widehat{CBD}+\widehat{BCI}=90^o\)
Gọi H là giao điểm BD và CI
=> \(\widehat{BHC}=90^o\)
=> CI vuông BD