Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta HAD\) và \(\Delta ABD\) có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{BDA}\) chung
suy ra: \(\Delta HAD~\Delta ABD\)
b) Áp dụng định lý Pytago ta có:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm
\(\Delta HAD~\Delta ABD\) \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)
hay \(AH=\frac{20.15}{25}=12\)
P/s: tính AH áp dụng ngay hệ thức lượng cx đc
Bạn tự vẽ hình nha!
a, Xét \(\Delta HAD\) và \(\Delta ABD\) có:
Góc AHD = Góc DAB ( = 90 độ)
Góc ADB chung
=> \(\Delta HAD\) đông dạng\(\Delta ABD\) (g-g)
b, Xét \(\Delta ABD\) vuông tại A có :
\(BD^2=AB^2+AD^2=20^2+15^2=625\)
\(\Rightarrow BD=\sqrt{625}=25\)
Ta có: \(\Delta HAD\) đồng dạng \(\Delta ABD\) (theo câu a)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\Rightarrow AH=12\)
c, Xét \(\Delta HDA\) và \(\Delta HAB\) có:
\(\widehat{AHD}=\widehat{AHB}=90^0\)
\(\widehat{ADH}=\widehat{BAH}\) (cùng phụ với góc DAH )
\(\Rightarrow\Delta HDA\) đồng dạng \(\Delta HAB\) (g - g)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HD}{AH}\Rightarrow AH^2=HB.HD\)
nan thông minh lắm mak