Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )
Do đó:
+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).
+ Diện tích toàn phần của hình chóp đều là
Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )
+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )
a: Gọi O là tâm của hình vuông ABCD
S.ABCD là tứ giác đều có O là tâm của đáy ABCD
=>SO là trung đoạn và SO vuông góc (ABCD)
ABCD là hình vuông
=>\(AC=BD=\sqrt{12^2+12^2}=12\sqrt{2}\left(cm\right)\)
=>\(OA=OB=OC=OD=6\sqrt{2}\left(cm\right)\)
ΔSOA vuông tại O
=>SO^2+OA^2=SA^2
=>\(SO^2=10^2-\left(6\sqrt{2}\right)^2=100-72=28\)
=>\(SO=2\sqrt{7}\left(cm\right)\)
b: \(S_{xq}=\dfrac{C_{đáy}}{2}\cdot SO\)
\(=2\sqrt{7}\cdot\left(12\cdot\dfrac{4}{2}\right)=2\sqrt{7}\cdot24=48\sqrt{7}\left(cm^2\right)\)
\(S_{tp}=48\sqrt{7}+12^2=48\sqrt{7}+144\left(cm^2\right)\)
a.
Độ dài trung đoạn của hình chóp là:
\(\sqrt{12^2-10^2}=2\sqrt{11}\left(cm\right)\)
b.
Diện tích xung quanh của hình chóp là:
\(S_{xq}=\dfrac{8.4}{2}.2\sqrt{11}.\dfrac{1}{2}=16\sqrt{11}\left(cm^2\right)\)
Diện tích toàn phần của hình chóp là:
\(S_{tp}=16\sqrt{11}+12^2=197\left(cm^2\right)\)
Gọi H là trung điểm của CD
Vì ΔSCD cân tại S, có SH là đường trung tuyến nên đồng thời là đường cao
⇒ SH ⊥ CD.
Ta có:
Chu vi đáy là: 4. 30 = 120 (cm)
Diện tích xung quanh của hình chóp:
Diện tích đáy: Sd = 302 = 900 (cm2)
Diện tích toàn phần của hình chóp:
Stp = Sxq + Sd = 1200 + 900 = 2100 (cm2)