K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

Gọi K là trung điểm của SA
=>KM//SC

=>SC//(KMB)

d(SC;BM)=d(S;(KBM))=SK/SA*d(A;(KBM))=d(A;(KBM))

=>ΔABC đều

=>BM vuông góc AC

=>BM vuông góc (SAC)

Kẻ AQ vuông góc KM

=>AQ vuông góc (KMB)

=>d(A;(KMB))=AQ

\(SC=\sqrt{9a^2+4a^2}=a\sqrt{13}\)

KM=1/2SC=a*căn 3/2

=>\(AQ=\dfrac{3\sqrt{13}}{13}\)

=>d(BM;SC)=3*căn 13/13

4 tháng 7 2017

+ Gọi H là trung điểm của BC

Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH  ⊥ BC

Mà (SBC)  ⊥ (ABC)

Do đó SH  ⊥ (ABC)

+ Gọi K là hình chiếu vuông góc của H lên SA ⇒  HK ⊥ SA

Ta có  B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K

Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.

+ Tính HK

Tam giác SBC đều cạnh a ⇒  SH =  a 3 2

Tam giác ABC vuông cân tại A ⇒  AH =  B C 2 = a 2

Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2  

HK =  a 3 4

Vậy d(SA; BC) = a 3 4 .

Đáp án C

NV
22 tháng 4 2021

\(\left\{{}\begin{matrix}\left(SAB\right)\cap\left(SAD\right)=SA\\\left(SAB\right)\perp\left(ABCD\right)\\\left(SAD\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)

Gọi N là trung điểm BC \(\Rightarrow MN||AB\Rightarrow AB||\left(SMN\right)\)

\(\Rightarrow d\left(AB;SM\right)=d\left(AB;\left(SMN\right)\right)=d\left(A;\left(SMN\right)\right)\)

Từ A kẻ \(AH\perp SM\)

\(\left\{{}\begin{matrix}MN||AB\Rightarrow MN\perp AD\\SA\perp\left(ABCD\right)\Rightarrow SA\perp MN\end{matrix}\right.\) \(\Rightarrow MN\perp\left(SAD\right)\Rightarrow MN\perp AH\)

\(\Rightarrow AH\perp\left(SMN\right)\Rightarrow AH=d\left(A;\left(SMN\right)\right)\)

\(AC=a\sqrt{2}\Rightarrow SA=\sqrt{SC^2-AC^2}=a\)

\(AM=\dfrac{AD}{2}=\dfrac{a}{2}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AM^2}\Rightarrow AH=\dfrac{SA.AM}{\sqrt{SA^2+AM^2}}=\dfrac{a\sqrt{5}}{5}\)

6 tháng 7 2017

Đáp án D.

Kẻ Ax//BC, HI ⊥ Ax; HK ⊥ SI. 

Gọi M là trung điểm của AB

Ta có AI ⊥ (SHI)=> AI ⊥ HK=> HK ⊥ (SAI)=>d(H,(Sax)) = HK

Góc giữa SC và (ABC) là góc  S C H ^   =   60 0

Ta có:

NV
19 tháng 1 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)

\(\Rightarrow AB=a\)

Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)

\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)

Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)

Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)

Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)