K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\)  \(\Rightarrow BD\perp\left(SAC\right)\)

\(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) ; mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\left\{{}\begin{matrix}CD\perp\left(SAD\right)\Rightarrow CD\perp AK\\AK\perp SD\end{matrix}\right.\) \(\Rightarrow AK\perp\left(SCD\right)\)

\(\left\{{}\begin{matrix}AH\perp\left(SBC\right)\Rightarrow AH\perp SC\\AK\perp\left(SCD\right)\Rightarrow AK\perp SC\end{matrix}\right.\) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp HK\)

Mặt khác theo tính đối xứng hình vuông \(\Rightarrow HK||BD\Rightarrow HK\perp AC\Rightarrow HK\perp\left(SAC\right)\)

\(AI\in\left(SAC\right)\Rightarrow HK\perp AI\)

21 tháng 1 2021

a) Xét tam giác SAB và tam giác SAD có: 

+) Chung SA

+) \(AB=AD\)

+) \(\widehat{SAB}=\widehat{SAD}=90^0\) (Vì \(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) )

\(\Rightarrow\Delta SAB=\Delta SAD\left(c-g-c\right)\)

\(\Rightarrow\widehat{SAB}=\widehat{SAD}\)

\(\Rightarrow\Delta SAH=\Delta SAK\left(ch-gn\right)\)

\(\Rightarrow SH=SK\)

Mà SB=SD (Do \(\Delta SAB=\Delta SAD\))

\(\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)

\(\Rightarrow\)HK||BD( Áp dụng Talet cho tam giác SBD)

b)Đặt SA=x, AB=y

Gọi O là tâm của đáy (ABCD), trong mp(SAC) cho SO cắt AI tại J

S A C I J O

Ta tính được \(SC=\sqrt{x^2+2y^2}\) và SO=\(\sqrt{x^2+\dfrac{y^2}{2}}\)

Áp dụng định lí cos cho tam giác OSC có:

\(2SO.SC.\cos OSC=SO^2+SC^2-OC^2=x^2+\dfrac{y^2}{2}+x^2+2y^2-\dfrac{y^2}{2}=2x^2+2y^2\)

\(\Rightarrow SO.SC.cosOSC=x^2+y^2\)

\(\dfrac{SJ}{SO}=\dfrac{SI}{SO.cosOSC}=\dfrac{SA^2}{SC.SO.cosOSC}=\dfrac{x^2}{x^2+y^2}\left(1\right)\)

\(SK=\dfrac{SA^2}{SD}\Rightarrow\dfrac{SK}{SD}=\dfrac{SA^2}{SD^2}=\dfrac{x^2}{x^2+y^2}\left(2\right)\)

Từ (1) và (2), áp dụng định lí Talet đảo cho tam giác SDO ta có KJ||DO hay KJ||BD

Chứng minh tương tự ta có: JH||BD

Mà HK||BD nên K,H,J thẳng hàng 

\(\Rightarrow\exists1\) mặt phẳng chứa 4 điểm A,H,I,K (Vì AI cắt HK tại J)

\(\Rightarrow I\in mp\left(AHK\right)\)(đpcm)

Ta có: \(\left\{{}\begin{matrix}BD\perp AC\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\Rightarrow BD\perp\left(SAC\right)\)

Mà HK||BD

\(\Rightarrow HK\perp\left(SAC\right)\left(đpcm\right)\)

 

 

a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=1/căn 2

=>góc SCA=35 độ

b:

Kẻ BH vuông góc AC tại H

(SB;SAC)=(SB;SH)=góc BSH

\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)

AH=AC/2=a*căn 2/2

=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)

\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)

\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)

=>góc BSH=30 độ

c: (SD;(SAB))=(SD;SA)=góc ASD

tan ASD=AD/AS=2

nên góc ASD=63 độ

 

NV
13 tháng 1 2021

Đề bài sai rồi bạn

Muốn HK song song BD thì H, K phải là hình chiếu của A lên SB và SD

15 tháng 1 2021

Dạ em nhầm ạ, đề bài là hình chiếu của A trên SC, SD ạ

13 tháng 4 2018

a) có BC⊥AB ( vì ABCD là hình chữ nhật )

BC⊥SA ( vì SA vuông với ABCD ,SA ⊂ (SAB))

⇒ BC⊥(SAB)

⇒( SBC ) ⊥ (SAB)

Ý B TƯƠNG TỰ

b)có AH⊥BC( vì (SAB)⊥(SBC),AH⊂(SAB)

AH⊥SB( vì H chiếu của A trên BC)

⇒AH⊥(SBC) hay (AHK)⊥ SC (❉)

có AK⊥CD ( vì (SAD)⊥(SCD),AK⊂(SAD))

AK⊥SD (vì AK là hình chiếu của A trên SD )

⇒AK⊥(SCD) hay( AHK) ⊥SC (✱)

Từ (❉) và (✱) ⇒SC⊥(AHK) mà SC ⊂ (SAC) ⇒ (AHK)⊥(SAC)