K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

undefined

(α) và (SAD) cùng chứa điểm M. Mà (α) // AD nên (α) \(\cap\) (SAD) = d1 với d1 là đường thẳng đi qua M và song song với AD. 

Trong (SAD) gọi H = d1 \(\cap\) SA ⇒ (SAD) \(\cap\) (α) = MH

(α) và (SBD) cùng chứa điểm M. Mà (α) // SB nên (α) \(\cap\) (SBD) = d2 với d2 là đường thẳng đi qua M và song song với SB. 

Trong (SBD) gọi G = d2 \(\cap\) BD ⇒ (SAD) \(\cap\) (α) = MG

(SAB) và (α) cùng chứa điểm H. Mà (SAB) chứa SB, (α) chứa MG và ta lại có MG // SB

⇒ (SAB) \(\cap\) (α) = d3 với d3 là đường thẳng đi qua H và song song với SB và MG

Trong (SAB) gọi J = \(d_3\cap AB\) ⇒ (SAB) \(\cap\) (α) = HJ

Trong (ABCD) gọi K = JG \(\cap\) CD

Thiết diện cần tìm là tứ giác HMKJ (hình thang hai đáy HM, JK)

*Lưu ý : (α) không cắt (SBC) vì (α) // (SBC). 

\(\cap\)

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.

3 tháng 9 2021

undefined

a, Giả thiết cho biết (α) và(ABCD) cùng chứa điểm O

Mà (α) // AB ⇒ (α) chứa đường thẳng song song với AB

⇒ (α) \(\cap\) (ABCD) = d1 . Với d1 là đường thẳng đi qua O và song song với AB. Trong (ABCD) gọi \(\left\{{}\begin{matrix}G=d_1\cap AD\\H=d_1\cap BC\end{matrix}\right.\)

⇒ (α) \(\cap\) (ABCD) = GH (hình vẽ)

Giả thiết cho biết : 

Giả thiết cho biết (α) và (SAC) cùng chứa điểm O

Mà (α) // SC ⇒ (α) chứa đường thẳng song song với SC

⇒ (α) \(\cap\) (SAC) = d2 . Với d2 là đường thẳng đi qua O và song song với SC. Trong (SAC) gọi I = d2 \(\cap\) SA

⇒ (α) \(\cap\) (SAC) = O\(I\) (hình vẽ)

(P) và (SAB) cùng chứa điểm I. Mà (P) chứa GH, (SAB) chứa AB. Mà ta lại có AB // GH

⇒ (P) \(\cap\) (SAB) = d3. Với d3 là đường thẳng đi qua I và song song với AB và GH

Trong (SAB), gọi J = \(d_3\cap SB\)

⇒ Thiết diện cần tìm là tứ giác IJHG

Tứ giác này có IJ // HG nên nó là hình thang 

7 tháng 10 2019

1 tháng 7 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′

Ta có: M = AI ∩ (SCD)

b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Đường thẳng qua I song song với SD cắt BD tại K.

Do Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên OB < OD. Do đó điểm K thuộc đoạn OD.

Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.

Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N

Gọi L = NF ∩ SC

Ta có thiết diện là ngũ giác IREFL.